早教吧作业答案频道 -->数学-->
无穷级数1/n为何是发散的?无穷级数1/(n^2)和(1/n^3)又为何是收敛的?最好用图像作逻辑判断无穷级数1/n是因为其SIGMA值随n值增大而不断累加,而且无极限,所以为发散的吗?那1/(n^2)和(1/n^3)
题目详情
无穷级数 1/n 为何是发散的?无穷级数1/(n^2)和(1/n^3)又为何是收敛的?最好用图像作逻辑判断
无穷级数 1/n 是因为其SIGMA值随n值增大而不断累加,而且无极限,所以为发散的吗?
那1/(n^2)和(1/n^3)不也一样吗?为何又是收敛的呢?
无穷级数 1/n 是因为其SIGMA值随n值增大而不断累加,而且无极限,所以为发散的吗?
那1/(n^2)和(1/n^3)不也一样吗?为何又是收敛的呢?
▼优质解答
答案和解析
调和级数的证明比较抽象:
如果假设∑1/n收敛,记部份和为Sn,且设lim(n→∞)Sn=s
於是有lim(n→∞)S(2n)=s,有lim(n→∞)(S(2n)-Sn)=s-s=0
但是S(2n)-Sn=1/(n+1)+1/(n+2)+1/(n+n)>n/(n+n)=1/2,与lim(n→∞)(S(2n)-Sn)=s-s=0矛盾
所以调和级数∑1/n是发散的
又讨论P-级数∑1/(n^p)的敛散性.
(1)当p≤1时,因为n^p≤n,而调和级数∑1/n是发散的,根据比较审敛法知当01时,对於任意实数x,当n-1≤x1≤n,有1/n^p≤1/x^p
1/n^p=∫1/n^p dx((n-1)~n)
≤∫1/x^p dx((n-1)~n)
=1/(p-1)[1/(n-1)^(p-1)-1/n^(p-1)] (n=2,3,4.)
考虑级数∑[1/(n-1)^(p-1)-1/n^(p-1)],其部份和Sn=1-1/n^(p-1)
又有lim(n→∞)Sn=1,所以∑[1/(n-1)^(p-1)-1/n^(p-1)]收敛,根据比较审敛法,当p>1时,∑1/(n^p)收敛
如果假设∑1/n收敛,记部份和为Sn,且设lim(n→∞)Sn=s
於是有lim(n→∞)S(2n)=s,有lim(n→∞)(S(2n)-Sn)=s-s=0
但是S(2n)-Sn=1/(n+1)+1/(n+2)+1/(n+n)>n/(n+n)=1/2,与lim(n→∞)(S(2n)-Sn)=s-s=0矛盾
所以调和级数∑1/n是发散的
又讨论P-级数∑1/(n^p)的敛散性.
(1)当p≤1时,因为n^p≤n,而调和级数∑1/n是发散的,根据比较审敛法知当01时,对於任意实数x,当n-1≤x1≤n,有1/n^p≤1/x^p
1/n^p=∫1/n^p dx((n-1)~n)
≤∫1/x^p dx((n-1)~n)
=1/(p-1)[1/(n-1)^(p-1)-1/n^(p-1)] (n=2,3,4.)
考虑级数∑[1/(n-1)^(p-1)-1/n^(p-1)],其部份和Sn=1-1/n^(p-1)
又有lim(n→∞)Sn=1,所以∑[1/(n-1)^(p-1)-1/n^(p-1)]收敛,根据比较审敛法,当p>1时,∑1/(n^p)收敛
看了 无穷级数1/n为何是发散的?...的网友还看了以下:
问一道关于复数乘除运算的题x²-x+1y=f(x)=则f(1-i)为(x²+x+1我汗,怎么搞成了 2020-05-17 …
1.设a属於R,且x的二次方程式(1+i)x^2-(a+3i)x+(4+2i)=0有一实根,则(1 2020-05-21 …
复数z=2/1-i怎样化简?最后结果是1+i为什么我算出是1+2i呢?分母(1-i)*(1+i)= 2020-07-22 …
当I>1时√i+√i-1<2√i从而1/√i<2(√i-√i-1)怎么推出来的? 2020-07-25 …
(m^2+i)(1+mi)要更仔细的讲解求M?更仔细讲解=m^2+m^3i+i-m=m^2-m+( 2020-07-30 …
i是虚数,1-i²为什么等于2 2020-07-30 …
提问log2为底a再加i除以1+i为纯虚数,求a非常感谢,在线等 2020-08-01 …
已知i为虚数单位,若复数(a-1)+(a+1)i为实数,则实数a的值为[]A.-1B.0C.lD. 2020-08-02 …
关于微积分的已知电流随时间变化I=0.1t求五秒内焦耳热电阻4欧为什么我以t为自变量积分0.04t 2020-08-02 …
已知复数z1,z2满足z1的模为根号7+1z2的模为根号7-1z1-z2的模为4求z1/z2我用a+ 2020-10-31 …