早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设平面区域D={(x,y)|1≤x2+y2≤4,x≥0.y≥0}.计算∫∫Dxsin(πx2+y2)x+ydxdy.

题目详情
设平面区域D={(x,y)|1≤x2+y2≤4,x≥0.y≥0}.计算
∫∫
D
xsin(π
x2+y2
)
x+y
dxdy.
▼优质解答
答案和解析
∵积分区域D关于x,y的对称性
D
xsin(π
x2+y2
)
x+y
dxdy=
D
ysin(π
x2+y2
)
x+y
dxdy
因此有:
D
xsin(π
x2+y2
)
x+y
dxdy=
1
2
[
D
xsin(π
x2+y2
)
x+y
dxdy+
D
ysin(π
x2+y2
)
x+y
dxdy]
=
1
2
D
(x+y)sin(π
x2+y2
)
x+y
dxdy
=
1
2
D
sin(π
x2+y2
)dxdy
令x=rcosθ,y=rsinθ   r∈[1,2],θ∉[0,
π
2
];
于是原积分可化为:
D
xsin(π
x2+y2
)
x+y
dxdy=
1
2
D
sin(π
x2+y2
)dxdy
=
1
2
π
2
0
2
1
rsinπrdr
=
π
4
2
1
rsinπrdr
=
1
4
2
1
rsinπrdπr
=
1
4
×(-
2
1
rdcosπr)
=
1
4
×(-rcosπr
|
2
1
+
2
1
cosπrdr)
=
1
4
×(-3+
2
1
cosπrdr)
=-
3
4

故本题答案为:-
3
4