早教吧作业答案频道 -->其他-->
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式?f(x,y)?x+2?f(x,y)?y=-f(x,设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式?f(x,y)?x+2?f(x
题目详情
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式?f(x,y)?x+2?f(x,y)?y=-f(x,
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式
+2
=-f(x,y),若f(x,y)在D的边界上恒为零,则f(x,y)在D上( )
A.存在非零的最大值
B.存在非零的最小值
C.只在边界上取到最大值和最小值
D.能在边界上取到最大值和最小值
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式
| ?f(x,y) |
| ?x |
| ?f(x,y) |
| ?y |
A.存在非零的最大值
B.存在非零的最小值
C.只在边界上取到最大值和最小值
D.能在边界上取到最大值和最小值
▼优质解答
答案和解析
A错误:
因为f(x,y)在D的边界上恒为零,故如果f(x,y)存在非零的最大值,则最大值在内部取到.假设f(x,y)在D内某点P0(x0,y0)取得最大值M>0,则P0为极大值点,从而
|P0=
|P0=0.
由已知条件
+2
=-f(x,y)可得,f(x0,y0)=0,与M=f(x0,y0)>0矛盾.
B错误:类似于A可证选项B错误.
C错误:由A、B的分析可得,f(x,y)不存在非零最大值,也不存在非零最小值,从而f≡0.故最值可以在边界取得,也可以在内部取到.
D正确:由选项C的分析,f≡0,故最值可以在边界上取得最大值与最小值.
故选:D.
因为f(x,y)在D的边界上恒为零,故如果f(x,y)存在非零的最大值,则最大值在内部取到.假设f(x,y)在D内某点P0(x0,y0)取得最大值M>0,则P0为极大值点,从而
| ?f |
| ?x |
| ?f |
| ?y |
由已知条件
| ?f(x,y) |
| ?x |
| ?f(x,y) |
| ?y |
B错误:类似于A可证选项B错误.
C错误:由A、B的分析可得,f(x,y)不存在非零最大值,也不存在非零最小值,从而f≡0.故最值可以在边界取得,也可以在内部取到.
D正确:由选项C的分析,f≡0,故最值可以在边界上取得最大值与最小值.
故选:D.
看了 设D是一有界闭域,函数f(x...的网友还看了以下:
一道高数导数题①设f(x)在x=x0的某邻域可导,且f'(x0)=A,则lim(x→x0)f'(x 2020-06-10 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-12 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-18 …
设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是(A)极限limΔx 2020-07-09 …
1.f(x)=(2x^3)/3(x1),则f(x)在x=1处的:A.左右导数都存在B.左导数存在, 2020-07-23 …
不动点的基本问题设函数f(x)在R上定义,把满足f(x*)=x*的点称为f(x)的不动点.证明:若 2020-07-30 …
一道高数题目设f(x)在x=a的某个临域内有定义,则f(x)在x=a处可导的一个充分条件是()(A 2020-07-30 …
f(x^2)的极限存在而f(x)的极限不存在(x→0)还有|f(x)|极限存在,f(x)极限不存在 2020-07-31 …
1.函数f(x)在区间[a,b]上连续,则以下结论正确的是()(A)f(x)可能存在,也可能不存在, 2020-11-03 …
为什么[f(x)+f(-x)]/x在x趋于0时极限存在就能推出f(x)在x趋于0时的极限为0?前提是 2020-12-27 …