早教吧作业答案频道 -->数学-->
设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是(A)极限limΔx→0f(x0+Δx)-f(x0-Δx)/Δx存在(B)极限limn→∞n[f(x0+1/n)-f(x0)]存在(C)极限limt→∞t[f(x0)-f(x0-1/t)]存在(D)极限li
题目详情
设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是
(A) 极限limΔx→0 f(x0+Δx)-f(x0-Δx)/Δx存在
(B) 极限lim n→∞ n[f(x0+1/n)-f(x0)]存在
(C)极限 lim t→∞ t [f(x0)-f(x0-1/t)]存在
(D)极限 lim h→0 f(x0+h^2)-f(x0)/h^2存在
选哪个
尤其是B和D怎么思考呢
还有一个问题
lim n→∞ [f(x0+1/n)-f(x0)]/(1/n)极限存在
函数f(x)在x0处为什么是 不一定 可导呢?
(A) 极限limΔx→0 f(x0+Δx)-f(x0-Δx)/Δx存在
(B) 极限lim n→∞ n[f(x0+1/n)-f(x0)]存在
(C)极限 lim t→∞ t [f(x0)-f(x0-1/t)]存在
(D)极限 lim h→0 f(x0+h^2)-f(x0)/h^2存在
选哪个
尤其是B和D怎么思考呢
还有一个问题
lim n→∞ [f(x0+1/n)-f(x0)]/(1/n)极限存在
函数f(x)在x0处为什么是 不一定 可导呢?
▼优质解答
答案和解析
若lim f '(x0)=A,则lim[x→x0] [f(x)-f(x0)]/(x-x0)=A
因此lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A
则:f+'(x0)=f-'(x0)=A
反之:若f+'(x0)=f-'(x0)=A
则lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A
因此:lim[x→x0] [f(x)-f(x0)]/(x-x0)=A
即f '(x0)=A
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
因此lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A
则:f+'(x0)=f-'(x0)=A
反之:若f+'(x0)=f-'(x0)=A
则lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A
因此:lim[x→x0] [f(x)-f(x0)]/(x-x0)=A
即f '(x0)=A
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
看了 设函数f(x)在点x0的某邻...的网友还看了以下:
设f(x)=(x-a)^n*g(x),g(x)在x=a临域内有(n-1)阶连续的到函数,证明:f( 2020-04-27 …
数列推导设等差数列An的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列 2020-05-16 …
设f(x)在[a,b]上n阶可导,且其n阶导数在[a,b]上恒大于0(或者恒小于0),那么是否有f 2020-06-10 …
设f(x)=x^2ln(1+x),则f^(n)(0)=(n>=3)求函数f(x)=x^2ln(1+ 2020-06-18 …
设n为正整数,x≠0时,f(x)=x^n*sin(ln|x|),f(0)=0,求证f(x)在点x= 2020-06-18 …
设y=x^u,求y^n=?这是书上的解法是y'=ux^(u-1),y''=u(u-1)x^(u-2 2020-06-18 …
1.设函数y=x^2+e^2x,则y的50阶导数y^(50)=2.设函数y的n-2阶导数y^(n- 2020-06-18 …
求x^(m/n)的导数,m,n∈N+我的推论是:设k=x^(1/n)原式变为k^m其倒数为mk^( 2020-07-30 …
“n阶可导”和“n阶连续可导”的区别是不是“n阶可导”是指存在n阶导数,但是第n阶导数连不连续续不知 2020-11-02 …
函数+数列题已知函数f(x)=x²+x-1,α,β为方程以f(x)=0的两个根(α>β),f'(x) 2020-12-31 …