早教吧作业答案频道 -->数学-->
一道高数导数题①设f(x)在x=x0的某邻域可导,且f'(x0)=A,则lim(x→x0)f'(x)存在等于A.②设f(x)在x=x0处连续,且lim(x→x0)f'(x)存在等于A,则f'(x0)存在等于A.这两个命题中第一个是错的,第二个是对
题目详情
一道高数导数题
①设 f(x)在x=x0的某邻域可导,且f '(x0)=A,则 lim(x→x0) f '(x)存在等于A.
②设 f(x)在x=x0处连续,且 lim(x→x0) f '(x)存在等于A,则 f '(x0)存在等于A.
这两个命题中第一个是错的,第二个是对的,第一个错在哪,他和第二个有什么差别
①设 f(x)在x=x0的某邻域可导,且f '(x0)=A,则 lim(x→x0) f '(x)存在等于A.
②设 f(x)在x=x0处连续,且 lim(x→x0) f '(x)存在等于A,则 f '(x0)存在等于A.
这两个命题中第一个是错的,第二个是对的,第一个错在哪,他和第二个有什么差别
▼优质解答
答案和解析
1、第一个只能说明f(x)在x0可导,但如果导数不连续,则结论不准确.比如
f(x)=x^2sin1/x,当x不等于0时;f(0)=0.这个函数处处可导,但导数在x=0不连续,因此没有
lim f'(x)=f'(x0).
2、结论是准确的,此时可以证明导数在x0是连续的.
实际上,利用洛必达法则知道lim (f(x)--f(x0)/(x--x0)=lim f‘(x)=A,因此f'(x0)=A,再由条件知f'(x)在x0连续.
f(x)=x^2sin1/x,当x不等于0时;f(0)=0.这个函数处处可导,但导数在x=0不连续,因此没有
lim f'(x)=f'(x0).
2、结论是准确的,此时可以证明导数在x0是连续的.
实际上,利用洛必达法则知道lim (f(x)--f(x0)/(x--x0)=lim f‘(x)=A,因此f'(x0)=A,再由条件知f'(x)在x0连续.
看了 一道高数导数题①设f(x)在...的网友还看了以下:
如图所示,在oxy平面的第一象限内,存在以x轴(0≤x≤L)、y轴(0≤y≤L)及双曲线y=L24 2020-05-14 …
已知二元一次不等式平面区域,怎么求二元一次不等式?)题中已给出不等式表示的平面区域在直线上与x,y 2020-06-02 …
有二位数组a[n][m]对于指针问题*(*(a+i)+j)与a[i][j]为什么等价(i,j在n, 2020-06-12 …
如图所示,真空室内竖直条形区域I存在垂直纸面向外的匀强磁场,条形区域Ⅱ(含I、Ⅱ区域分界面)存在水 2020-06-28 …
如图,真空室内竖直条形区域I存在垂直纸面向外的匀强磁场,条形区域Ⅱ(含I、Ⅱ区域分界面)存在水平向 2020-06-28 …
设函数f(x,y)在有界闭区域D上有界,把D任意分成几个小区域△σi(i=1,2,…,n),在每一 2020-07-31 …
请问能否构造出函数f(x),f在区间I上有定义,x0∈I,f在x0处可导,但在x0的任何一个去心邻 2020-07-31 …
(2010•普陀区二模)在(x+1)9的二项展开式中任取2项,pi表示取出的2项中有i项系数为奇数 2020-08-03 …
哪些代数数域中素因数的唯一分解性成立?又在哪些数域中不成立?怎么判定?如题.比如,有理数域中的整数素 2020-11-02 …
如图所示,真空室内竖直条形区域I存在垂直纸面向外的匀强磁场,条形区域Ⅱ(含I、Ⅱ区域分界面)存在水平 2020-12-25 …