早教吧作业答案频道 -->数学-->
一道高数导数题①设f(x)在x=x0的某邻域可导,且f'(x0)=A,则lim(x→x0)f'(x)存在等于A.②设f(x)在x=x0处连续,且lim(x→x0)f'(x)存在等于A,则f'(x0)存在等于A.这两个命题中第一个是错的,第二个是对
题目详情
一道高数导数题
①设 f(x)在x=x0的某邻域可导,且f '(x0)=A,则 lim(x→x0) f '(x)存在等于A.
②设 f(x)在x=x0处连续,且 lim(x→x0) f '(x)存在等于A,则 f '(x0)存在等于A.
这两个命题中第一个是错的,第二个是对的,第一个错在哪,他和第二个有什么差别
①设 f(x)在x=x0的某邻域可导,且f '(x0)=A,则 lim(x→x0) f '(x)存在等于A.
②设 f(x)在x=x0处连续,且 lim(x→x0) f '(x)存在等于A,则 f '(x0)存在等于A.
这两个命题中第一个是错的,第二个是对的,第一个错在哪,他和第二个有什么差别
▼优质解答
答案和解析
1、第一个只能说明f(x)在x0可导,但如果导数不连续,则结论不准确.比如
f(x)=x^2sin1/x,当x不等于0时;f(0)=0.这个函数处处可导,但导数在x=0不连续,因此没有
lim f'(x)=f'(x0).
2、结论是准确的,此时可以证明导数在x0是连续的.
实际上,利用洛必达法则知道lim (f(x)--f(x0)/(x--x0)=lim f‘(x)=A,因此f'(x0)=A,再由条件知f'(x)在x0连续.
f(x)=x^2sin1/x,当x不等于0时;f(0)=0.这个函数处处可导,但导数在x=0不连续,因此没有
lim f'(x)=f'(x0).
2、结论是准确的,此时可以证明导数在x0是连续的.
实际上,利用洛必达法则知道lim (f(x)--f(x0)/(x--x0)=lim f‘(x)=A,因此f'(x0)=A,再由条件知f'(x)在x0连续.
看了 一道高数导数题①设f(x)在...的网友还看了以下:
若f(a)不等于0,f(a)>0,则f(x)>0吗?为什么? 2020-04-09 …
已知函数f(x)=sin(2x+φ),其中0<φ<2π,若f(x)≤|f(π6)|对x∈R恒成立, 2020-04-12 …
已知函数f(x)对任意实数a,b有f(a)不等于0,f(a+b)=f(a)f(b),当x小于0时, 2020-05-19 …
一道高数题,不会上照片--.已知f''(a)存在,f'(a)不等于0,求lim[11]x->a-- 2020-06-06 …
设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1 2020-06-16 …
f(x)在X上有界的充分必要条件是它在X上既有上界又有下界充分性:反证法,假设f(x)在X上没有上 2020-06-23 …
高等数学题:设映射f:X→Y,A是X的子集,记f(A)的原像为f(^-1)(f(A)).证明:(1 2020-07-13 …
高等数学:由函数的极限判断函数的极值的问题设lim[f(x)-f(a)]/(x-a)^2在x趋向a 2020-07-30 …
一个导数问题的理解设f(x)在[a,b]上连续,在(a,b)内可导且不恒于常数,f(a)=f(b) 2020-07-31 …
介值定理里为什么要f(a)不等于f(b)?介值定理:设函数在闭区间[a,b]上连续,且f(a)不等 2020-08-01 …