早教吧 育儿知识 作业答案 考试题库 百科 知识分享

f(x)二阶可导,f(π)=0,f''(π)>0,x=π是f(x)的极值点,g(x)=f(x)cosx,则

题目详情
f(x)二阶可导,f(π)=0,f''(π)>0,x=π是f(x)的极值点,g(x)=f(x)cosx,则
▼优质解答
答案和解析
极值点都是驻点,因此f'(π)=0.
g'(x)=f'(x)cosx-f(x)sinx,g'(π)=f'(π)cosπ-f(π)sinπ=0;
g''(x)=f''(x)cosx-2f'(x)sinx-f(x)cosx,
g''(π)=f''(π)cosπ-2f'(π)sinπ-f(π)cosπ
=-f''(π)