早教吧作业答案频道 -->数学-->
如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.(Ⅰ)证明:平面PAD⊥平面ABFE;(Ⅱ)求正四棱锥P-ABCD的高h,使得该四棱锥的体积是三棱锥P-ABF
题目详情
如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.

(Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P-ABCD的高h,使得该四棱锥的体积是三棱锥P-ABF体积的4倍.

(Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P-ABCD的高h,使得该四棱锥的体积是三棱锥P-ABF体积的4倍.
▼优质解答
答案和解析
(Ⅰ)证明:直三棱柱ADE-BCF中,AB⊥平面ADE,
所以:AB⊥AD,又AD⊥AF,
所以:AD⊥平面ABFE,AD⊂平面PAD,
所以:平面PAD⊥平面ABFE….(6分)
(Ⅱ)P到平面ABCD的距离d=1
所以:VP-ABF=
S△ABFd=
×
×2×2×1=
而:VP-ABCD=
SABCDh=
×2×2h=4VP-ABF=
,
所以h=2….(12分)

所以:AB⊥AD,又AD⊥AF,
所以:AD⊥平面ABFE,AD⊂平面PAD,
所以:平面PAD⊥平面ABFE….(6分)
(Ⅱ)P到平面ABCD的距离d=1
所以:VP-ABF=
1 |
3 |
1 |
3 |
1 |
2 |
2 |
3 |
而:VP-ABCD=
1 |
3 |
1 |
3 |
8 |
3 |
所以h=2….(12分)
看了 如图所示,该几何体是由一个直...的网友还看了以下:
[急]一题高一的数学题,关于数列和级数的如果一个A.P.的首项是一,项数是奇数,且它的奇数项的和是 2020-04-27 …
设ab是两条异面直线,P是ab外的一点,则下列结论正确的是()A.过P有一条直线和ab都平行B.过 2020-05-13 …
设ab是两条异面直线,P是ab外的一点,则下列结论正确的是()A.过P有一条直线和ab都平行B.过 2020-05-13 …
如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0) 2020-05-16 …
如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0) 2020-05-16 …
判断三维空间中一点在直线上的方法我想的是通过三维空间直线坐标的两点式来确定:有3个点,p,a,b. 2020-06-14 …
设事件A和B满足p(B)=0.7,p(A'B)=0.3,则p(A'UB')=多少.在有'就是表示上 2020-07-08 …
a,b是异面直线,()A,若P为不在a,b上的一点,则过点p有且只有一个平面与a,b平行B,过直线 2020-07-22 …
已知命题p:“若直线a与平面α内两条直线垂直,则直线a与平面α垂直”,命题q:“存在两个相交平面垂 2020-07-29 …
线性代数问题若A可逆,证明AB~BA.证法:AB~A^1ABA=BA第一步怎么来的?难道A相似于本身 2020-11-04 …