早教吧作业答案频道 -->数学-->
在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).(1)如图1,若点D在线段BC上运动,DE交AC于E.①求证:△ABD∽△DCE;②当△ADE是等腰三角形
题目详情
在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).

(1)如图1,若点D在线段BC上运动,DE交AC于E.
①求证:△ABD∽△DCE;
②当△ADE是等腰三角形时,求AE的长.
(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E,是否存在点D,使△ADE′是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;
②如图3,若点D在BC的反向延长线上运动,是否存在点D,使△ADE是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.

(1)如图1,若点D在线段BC上运动,DE交AC于E.
①求证:△ABD∽△DCE;
②当△ADE是等腰三角形时,求AE的长.
(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E,是否存在点D,使△ADE′是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;
②如图3,若点D在BC的反向延长线上运动,是否存在点D,使△ADE是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.
▼优质解答
答案和解析
(1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°.
由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.
推出△ABD∽△DCE.
②分三种情况:
(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.
(ⅱ)当AD=DE时,由①知△ABD∽△DCE,
又AD=DE,知△ABD≌△DCE.
所以AB=CD=2,故BD=CE=2
−2,
所以AE=AC-CE=4-2
.
(ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C,
故∠ADC=∠AED=90°.
所以DE=AE=
AC=1.
(2)①存在(只有一种情况).
由∠ACB=45°推出∠CAD+∠ADC=45°.
由∠ADE=45°推出∠DAC+∠DE′A=45°.
从而推出∠ADC=∠DE′A.证得△ADC∽△AE′D.
所以
=
,又AD=DE′,所以DC=AC=2.
②不存在.
因为D和B不重合,
所以∠AED<45°,∠ADE=45°,
∠DAE>90度.
所以AD≠AE,
同理可得:AE≠DE.
由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.
推出△ABD∽△DCE.
②分三种情况:
(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.
(ⅱ)当AD=DE时,由①知△ABD∽△DCE,
又AD=DE,知△ABD≌△DCE.
所以AB=CD=2,故BD=CE=2
2 |
所以AE=AC-CE=4-2
2 |
(ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C,
故∠ADC=∠AED=90°.
所以DE=AE=
1 |
2 |
(2)①存在(只有一种情况).
由∠ACB=45°推出∠CAD+∠ADC=45°.
由∠ADE=45°推出∠DAC+∠DE′A=45°.
从而推出∠ADC=∠DE′A.证得△ADC∽△AE′D.
所以
AC |
DC |
AD |
E′D |
②不存在.
因为D和B不重合,
所以∠AED<45°,∠ADE=45°,
∠DAE>90度.
所以AD≠AE,
同理可得:AE≠DE.
看了 在Rt△ABC中,∠BAC=...的网友还看了以下:
已知等边△ABC,点D是直线BC上一点,以AD为边在AD的右侧作等边△ADE,连结CE.(1)如图 2020-05-13 …
如图在三角形ABC中,BD垂直AC,EF垂直AC,垂直分别为点D,F(1)若角DEF=角CBD,试 2020-06-03 …
如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C 2020-06-04 …
如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C 2020-06-04 …
如图,点C是线段AB的中点.(1)若点D在线段CB上,且DB=3.5cm,AD=6.5cm,求线段 2020-06-15 …
在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点 2020-06-23 …
在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F 2020-07-17 …
在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F 2020-07-20 …
已知,在三角形abc中,点d是平面内任意一点,连接bd,cd.⑴若点d在三角形的内部,如图1所示,求 2020-12-09 …
已知,在△ABC中,点D是平面内一点,连接BD,CD.⑴若点d在三角形的内部,如图1所示,求证∠bd 2020-12-09 …