早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的

题目详情
在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2
(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.
作业帮
▼优质解答
答案和解析
(1)∵点D关于直线AE的对称点为F,
∴EF=DE,AF=AD,∠DAE=∠EAF=α
∴∠CAE+∠CAF=α
∵∠BAC=2∠DAE=2α.
∴∠BAD+∠CAE=∠BAC-∠DAE=α,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△ABD≌△ACF(SAS),
(2)由(1)知,△ABD≌△ACF(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
在Rt△CEF中,由勾股定理得,EF2=CF2+CE2
∴DE2=BD2+CE2
(3)DE2=BD2+CE2
理由:如图,
作业帮
∵∠BAC=2∠DAE=2α.
∴∠DAE=α,
∵点D关于直线AE的对称点为F,
∴EF=DE,AF=AD,∠DAE=∠EAF=α
∴∠CAF=∠EAF+∠CAE=α+∠CAE
∴∠BAD=∠BAC-∠DAC=2α-∠DAC=2α-(∠DAE-∠CAE)=2α-(α-∠CAE)=α+∠CAE
∴∠BAD=∠CAF,
在△ABD和△ACF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△ABD≌△ACF(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
在Rt△CEF中,由勾股定理得,EF2=CF2+CE2
∴DE2=BD2+CE2