早教吧作业答案频道 -->数学-->
抛物线y^2=8x的准线交于x轴于点M,F是抛物线的焦点,过点M的直线l交抛物线于A,B,且使2AF=BF,求直线l
题目详情
抛物线y^2=8x的准线交于x轴于点M,F是抛物线的焦点,过点M的直线l交抛物线于A,B,且使2AF=BF,求直线l
▼优质解答
答案和解析
答:抛物线y^2=8x的焦点F(2,0),准线x=-2,点M(-2,0).
设A(2a^2,4a),点B(2b^2,4b).
抛物线上点到焦点的距离等于其到准线的距离,所以根据2AF=BF得:
2(2a^2+2)=2b^2+2
所以:b^2=2a^2+1………………(1)
直线AB的斜率k=(4b-4a)/(2b^2-2a^2)=2/(a+b)=(4a-0)/(2a^2+2)
整理得:ab=1……………………(2)
由(1)和(2)解得:a^2=1/2,b^2=2
因为A、B是在x轴的同一侧,所以a和b同号.a=√2/2时b=√2;a=-√2/2时b=-√2
所以:k=2/(a+b)=2√2/3或者-2√2/3
所以:直线L为y=k(x+3)=2√2(x+2)/3或者y=-2√2(x+2)/3
综上所述,直线L为y=2√2(x+2)/3或者y=-2√2(x+2)/3
设A(2a^2,4a),点B(2b^2,4b).
抛物线上点到焦点的距离等于其到准线的距离,所以根据2AF=BF得:
2(2a^2+2)=2b^2+2
所以:b^2=2a^2+1………………(1)
直线AB的斜率k=(4b-4a)/(2b^2-2a^2)=2/(a+b)=(4a-0)/(2a^2+2)
整理得:ab=1……………………(2)
由(1)和(2)解得:a^2=1/2,b^2=2
因为A、B是在x轴的同一侧,所以a和b同号.a=√2/2时b=√2;a=-√2/2时b=-√2
所以:k=2/(a+b)=2√2/3或者-2√2/3
所以:直线L为y=k(x+3)=2√2(x+2)/3或者y=-2√2(x+2)/3
综上所述,直线L为y=2√2(x+2)/3或者y=-2√2(x+2)/3
看了 抛物线y^2=8x的准线交于...的网友还看了以下:
已知抛物线C:y^2=4px(p>0)的焦点在直线l:x-my-p^2=0,1.求抛物线方程2设直 2020-05-13 …
已知抛物线y=ax^2+bx+c经过点A(-1,0),B(3,0)C(0,3)三点,直线L是抛物线 2020-05-15 …
已知抛物线C:y²=4x(p>0)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C 2020-05-16 …
已知二次函数Y=AX²+BX+C的图像进过点2 -5 顶点为-1 4,直线l的表达式为y=2x+m 2020-05-16 …
圆锥曲线问题,抛物线的已知抛物线y²=4px(P>0)的焦点在直线l:X-MY-P²=0上.1.求 2020-06-12 …
已知抛物线y=-x^2+2,过其上一点P引抛物线的切线L使L与两坐标在第一向限围成的三角形面积最小 2020-07-02 …
过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时, 2020-07-22 …
抛物线y^2=8x的准线交于x轴于点M,F是抛物线的焦点,过点M的直线l交抛物线于A,B,且使2A 2020-07-31 …
已知抛物线C:y^2=2px(p>0)过点A(1,-2)(1)求抛物线C的方程,并求其准线方程(2) 2020-10-31 …
直线和抛物线综合问题求解已知直线l的方程为y=kx+k²,无论k为何值时,直线l鱼抛物线x²=4py 2021-01-04 …