早教吧作业答案频道 -->数学-->
已知抛物线y=ax^2+bx+c经过点A(-1,0),B(3,0)C(0,3)三点,直线L是抛物线的对称轴.(2)设点P是直线L上的一个动点,当三角形PAC的周长最小时,求点P的坐标(3)在直线L上是否存在点M,使三角形MA
题目详情
已知抛物线y=ax^2+bx+c经过点A(-1,0),B(3,0)C(0,3)三点,直线L是抛物线的对称轴.
(2)设点P是直线L上的一个动点,当三角形PAC的周长最小时,求点P的坐标
(3)在直线L上是否存在点M,使三角形MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标
(2)设点P是直线L上的一个动点,当三角形PAC的周长最小时,求点P的坐标
(3)在直线L上是否存在点M,使三角形MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标
▼优质解答
答案和解析
(2)由A、B、C三点可得,抛物线的解析式为:y=-2x^2+5x+3;
由于P在对称轴L上,所以设P为(1,y)
当三角形PAC周长C最短时,即AP+PC+AC的和最短,
即C=|AC|+|PA|+|PC|=
(3)有两个点.①AC为边,此时另一点为L与x轴的交点;
②AC为底边,另一点在AC的中垂线与L的交点.
具体的过程和步骤,自己应该多多练习,做题才会熟练.
有什么不会的就继续追问,我会及时回答的!
由于P在对称轴L上,所以设P为(1,y)
当三角形PAC周长C最短时,即AP+PC+AC的和最短,
即C=|AC|+|PA|+|PC|=
(3)有两个点.①AC为边,此时另一点为L与x轴的交点;
②AC为底边,另一点在AC的中垂线与L的交点.
具体的过程和步骤,自己应该多多练习,做题才会熟练.
有什么不会的就继续追问,我会及时回答的!
看了 已知抛物线y=ax^2+bx...的网友还看了以下:
1.若正数a,b满足ab-(a+b)=1,则a+b最小值为多少?2.设M=(1/a-1)(1/b- 2020-04-05 …
概率题急求解1设A,B为随机事件且P(A)=0.7,P(A-B)=0.3,求P(A非B非).2设A 2020-04-12 …
用八张数字卡片(三张0,二张4,三张5)拼成八位数,要求:3个0都读,请问怎么拼? 2020-05-13 …
设α∈(0,π/3),β(π/6,π/2),且α,β满足5√3sinα+5cosα=8√2sinβ 2020-05-13 …
(1/3)在直角坐标系XOy中,点P到两点(0,负跟号3),(0,根号3)的距离之和等于4,设点P 2020-05-16 …
用定义求3/π到0的定积分cosxdx,为什么用定义求和用牛顿莱布尼茨公式求的答案符号相反呢? 2020-05-23 …
设f(x)在闭区间[0,1]连续,在(0,1)内可导且f(0)=0,f(1)=1/3求证:彐ξ设f 2020-06-23 …
设函数f(x)={sinkx/3,x≠0;2,x=0}在x=0处连续,求k的值.重新写一下“设函数 2020-08-02 …
设随机变量X1,X2,X3,X4独立同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1, 2020-10-30 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …