早教吧作业答案频道 -->数学-->
已知抛物线y=-x^2+2,过其上一点P引抛物线的切线L使L与两坐标在第一向限围成的三角形面积最小求切线L的切线
题目详情
已知抛物线y=-x^2+2,过其上一点P引抛物线的切线L使L与两坐标在第一向限围成的三角形面积最小求切线L的切线
▼优质解答
答案和解析
设切点P为(a,-a^2+2),将这个y=-x^2+2求导有y的导数=-2x,所以切线的斜率为
k=-2a,故设切线为y=-2ax+2+a^2,由于所围成的三角形在第一象限,所以a>0,
x轴,y轴的截距分别是(a^2+2)/2a,2+a^2,
则三角形的面积=1/2*(a^2+2)/2a*(2+a^2)=(a^2+2)^2/(4a).要对这个函数取最小值,先求导,得到(3a^4+4a^2-4)/(4a^2),有零点a=√6/3,
故函数f(x)=(a^2+2)^2/(4a).在当a∈(0,√6/3)时,单调递减,
在(√6/3,+∞),单调递增.故在当a=√6/3时有最小值,
∴切线为y=-2√6/3x+8/3.
k=-2a,故设切线为y=-2ax+2+a^2,由于所围成的三角形在第一象限,所以a>0,
x轴,y轴的截距分别是(a^2+2)/2a,2+a^2,
则三角形的面积=1/2*(a^2+2)/2a*(2+a^2)=(a^2+2)^2/(4a).要对这个函数取最小值,先求导,得到(3a^4+4a^2-4)/(4a^2),有零点a=√6/3,
故函数f(x)=(a^2+2)^2/(4a).在当a∈(0,√6/3)时,单调递减,
在(√6/3,+∞),单调递增.故在当a=√6/3时有最小值,
∴切线为y=-2√6/3x+8/3.
看了 已知抛物线y=-x^2+2,...的网友还看了以下:
已知an为等差数列,p,r,k,l,m为n*,p+r=2k,ap+ar=2ak已知an为等差数列, 2020-05-14 …
求高手迅速英语翻译成中文when the robot senses, and when 2020-05-16 …
圆和直线方程已知直线l的方程为x-y+2根号2=0,圆的方程为x+y=1(1)若Q为圆O上任一 2020-05-17 …
曲线与方程题过点(0,3)的直线L交曲线4X²+Y²=4于A.B两点,O是坐标原点,L上的动点P满 2020-05-17 …
已知点P(2,3)和直线l:x+y+1=0求(1)点p关于直线l的对称点p’的坐标(2)若一束光线 2020-06-12 …
过直线l外的一点P引两条直线PA,PB和直线l分别相交于A,B两点,求证:三条直线PA,PB,l共 2020-06-15 …
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.(1)求使直线l和 2020-07-08 …
已知直线L经过点P(1,-3根号三),倾斜角为兀/3,1、求直线L与直线L':y=x减去二倍根号三 2020-07-13 …
概率统计问题,急,推广的二项系数公式(-r,L)=(-1)^L(r+L-1,L)怎么得来的?∞∑( 2020-07-30 …
爪子定理是?高二数学立体几何里的某定理图示,直线l和平面a交于点P,l在a上有射影PA,(不确定是 2020-07-30 …