早教吧作业答案频道 -->数学-->
已知椭圆的中心是O,长轴.短轴的长分别为2a,2b(a大于b大于0),A,B分别为椭圆上的两点,而且OA垂直于OB求证1/OA的绝对值+1/OB的绝对值为定值
题目详情
已知椭圆的中心是O,长轴.短轴的长分别为2a,2b(a大于b大于0),A,B分别为椭圆上的两点,而且OA垂直于OB
求证 1/OA的绝对值+1/OB的绝对值 为定值
求证 1/OA的绝对值+1/OB的绝对值 为定值
▼优质解答
答案和解析
设OA的所在直线方程为y=kx,则OB所在直线方程为y=-x/k;
它们与椭圆的交点A、B坐标(xa,ya)、(xb,yb)满足
xa^2=1/[1/a^2+k^2/b^2]
ya^2=k^2/[1/a^2+k^2/b^2]
xb^2=1/[1/a^2+1/(k^2b^2)]
yb^2=1/[k^2/a^2+1/b^2]
OA^2=xa^2+ya^2=(1+k^2)/[1/a^2+k^2/b^2]
OB^2=xb^2+yb^2=(1+1/k^2)/[1/a^2+1/(k^2b^2)]
1/OA^2+1/OB^2=[1/a^2+k^2/b^2]/(1+k^2)+[1/a^2+1/(k^2b^2)]*k^2/(1+k^2)
=1/a^2+1/b^2为定值.
以中心为极点,x轴为极轴建立极坐标系
方程为ρ^2(cosθ)^2/a^2+ρ^2(sinθ)^2/b^2=1
1/ρ^2=(cosθ)^2/a^2+(sinθ)^2/b^2
设A(ρ1,θ),由OA⊥OB得B(ρ2,θ+π/2)
1/OA^2+1/OB^2=1/ρ1^2+1/ρ2^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(cos(θ+π/2))^2/a^2+(sin(θ+π/2))^2/b^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(sinθ)^2/a^2+(cosθ)^2/b^2
=1/a^2+1/b^2
它们与椭圆的交点A、B坐标(xa,ya)、(xb,yb)满足
xa^2=1/[1/a^2+k^2/b^2]
ya^2=k^2/[1/a^2+k^2/b^2]
xb^2=1/[1/a^2+1/(k^2b^2)]
yb^2=1/[k^2/a^2+1/b^2]
OA^2=xa^2+ya^2=(1+k^2)/[1/a^2+k^2/b^2]
OB^2=xb^2+yb^2=(1+1/k^2)/[1/a^2+1/(k^2b^2)]
1/OA^2+1/OB^2=[1/a^2+k^2/b^2]/(1+k^2)+[1/a^2+1/(k^2b^2)]*k^2/(1+k^2)
=1/a^2+1/b^2为定值.
以中心为极点,x轴为极轴建立极坐标系
方程为ρ^2(cosθ)^2/a^2+ρ^2(sinθ)^2/b^2=1
1/ρ^2=(cosθ)^2/a^2+(sinθ)^2/b^2
设A(ρ1,θ),由OA⊥OB得B(ρ2,θ+π/2)
1/OA^2+1/OB^2=1/ρ1^2+1/ρ2^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(cos(θ+π/2))^2/a^2+(sin(θ+π/2))^2/b^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(sinθ)^2/a^2+(cosθ)^2/b^2
=1/a^2+1/b^2
看了 已知椭圆的中心是O,长轴.短...的网友还看了以下:
如图,以O为圆心的两个同心圆中,大圆的直径AD交小圆于M.N如图,以O为圆心的两个同心圆中,大圆的 2020-05-22 …
求此高一数学题的过程:已知圆O1和圆O2的半径都等于1,O1O2=4,过动点P分别作圆O圆O的切线 2020-06-04 …
(2013•江苏)下列选项中的各14圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各14圆 2020-07-14 …
如图所示,磁场方向垂直于纸面,磁感应强度大小在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用绝 2020-07-19 …
在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆 2020-07-26 …
.在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且 2020-07-26 …
如图所示,两个同心圆O,大圆的弦AB切小圆于点C,求证:点C是AB的中点 2020-08-01 …
两个同心圆O,大圆O是小圆O半径的2倍,大圆O的弦AB切小圆O于点D,连接AO并延长交小圆于点C, 2020-08-01 …
(2014•贵港)如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半 2020-11-13 …
应用题,大谢特谢!要绝对正确的解答!广告乱字装高深说废话的请饶道!1.如图,AB和CD与半圆O相切于 2020-12-05 …