早教吧作业答案频道 -->数学-->
(2005•武汉)如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D.(1)求证:PC平分∠BPD;(2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O
题目详情
(2005•武汉)如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D.
(1)求证:PC平分∠BPD;
(2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论.

(1)求证:PC平分∠BPD;
(2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论.

▼优质解答
答案和解析
(1)欲证PC平分∠BPD,即证∠BPC=∠CPD,可以过点P作两圆的公切线PM交AC于点M,根据切线的性质得出∠BPM=∠A,∠MPC=∠C,再通过角与角相互间的关系得出;
(2)同(1),只是∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA.
证明:(1)如图1,过点P作两圆的公切线MP,交AC于点M.
则∠BPM=∠A,∠MPC=∠C.
∴∠BPC=∠BPM+∠MPC=∠A+∠C=∠CPD,
∴PC平分∠BPD;
(2)如图2,过点P作两圆的公切线PM,
则∠MPB=∠A,∠MPC=∠BCP=∠PDC;
∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,
∴PC平分∠BPD.
(2)同(1),只是∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA.

则∠BPM=∠A,∠MPC=∠C.
∴∠BPC=∠BPM+∠MPC=∠A+∠C=∠CPD,
∴PC平分∠BPD;
(2)如图2,过点P作两圆的公切线PM,

则∠MPB=∠A,∠MPC=∠BCP=∠PDC;
∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,
∴PC平分∠BPD.
看了 (2005•武汉)如图,已知...的网友还看了以下:
1.肾上腺的结构,正确的描述是()A.位于腹膜后方,肾的外上方B.肾上腺皮质在表层,分泌肾上腺素C 2020-04-26 …
一.下列多项式不能用平方差公式分解因式的是( )A,4分之一x的平方y的平方-4 B,4-0.25 2020-05-14 …
已知P在直线l:x+y-1=0上,Q在圆C:(x-2)2+(y-2)2=1上.(1)过P作圆C的切 2020-06-03 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
已知∠AOB=60o,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.(1 2020-07-31 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-07-31 …
2014年安徽理科数学21题的解答方法是什么啊?还是很难的,难怪是高考压轴题啊,毫无思路设实数c> 2020-08-01 …
(2004•淄博)已知⊙O的半径为R,⊙P的半径为r(r<R),且⊙P的圆心P在⊙O上.设C是⊙P上 2020-11-13 …