早教吧作业答案频道 -->数学-->
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴、y轴分别相交于点D、点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,43).(1)求证:OE=CE;(2
题目详情
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=
x+2
与x轴、y轴分别相交于点D、点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,4
).

(1)求证:OE=CE;
(2)请判断直线CD与⊙P位置关系,证明你的结论,并请求出⊙P的半径长.
| ||
3 |
3 |
3 |

(1)求证:OE=CE;
(2)请判断直线CD与⊙P位置关系,证明你的结论,并请求出⊙P的半径长.
▼优质解答
答案和解析
(1)证明:连接OC,
∵直线y=
x+2
与y轴相交于点E,
∴点E的坐标为(0,2
),即OE=2
.
又∵点B的坐标为(0,4
),
∴OB=4
,
∴BE=OE=2
,
又∵OA是⊙P的直径,
∴∠ACO=90°,即OC⊥AB,
∴OE=CE(直角三角形斜边上的中线等于斜边的一半)
(2)直线CD是⊙P的切线.
①证明:连接PC、PE,由①可知:OE=CE.
在△POE和△PCE,
,
∴△POE≌△PCE,
∴∠POE=∠PCE.
又∵x轴⊥y轴,
∴∠POE=∠PCE=90°,
∴PC⊥CE,即:PC⊥CD.
又∵直线CD经过半径PC的外端点C,
∴直线CD是⊙P的切线;
②∵对y=
x+2
,当y=0时,x=-6,即OD=6,
在Rt△DOE中,DE=
=
=4
,
∴CD=DE+EC=DE+OE=4
+2
=6
.
设⊙P的半径为r,则在Rt△PCD中,由勾股定理知PC2+CD2=PD2,
即 r2+(6
)2=(6+r)2,
解得 r=6,即⊙P的半径长为6.
∵直线y=
| ||
3 |
3 |
∴点E的坐标为(0,2
3 |
3 |
又∵点B的坐标为(0,4
3 |
∴OB=4
3 |
∴BE=OE=2
3 |
又∵OA是⊙P的直径,

∴∠ACO=90°,即OC⊥AB,
∴OE=CE(直角三角形斜边上的中线等于斜边的一半)
(2)直线CD是⊙P的切线.
①证明:连接PC、PE,由①可知:OE=CE.
在△POE和△PCE,
|
∴△POE≌△PCE,
∴∠POE=∠PCE.
又∵x轴⊥y轴,
∴∠POE=∠PCE=90°,
∴PC⊥CE,即:PC⊥CD.
又∵直线CD经过半径PC的外端点C,
∴直线CD是⊙P的切线;
②∵对y=
| ||
3 |
3 |
在Rt△DOE中,DE=
OD2+OE2 |
62+(2
|
3 |
∴CD=DE+EC=DE+OE=4
3 |
3 |
3 |
设⊙P的半径为r,则在Rt△PCD中,由勾股定理知PC2+CD2=PD2,
即 r2+(6
3 |
解得 r=6,即⊙P的半径长为6.
看了 如图,点A在x轴的正半轴上,...的网友还看了以下:
初中数学,在直角坐标系中,直线L:Y=,-2x+4分别交x轴点A,直线Y=X与直线L交于点B初中数 2020-06-06 …
(1/2)已知直线l:y=x+b及圆C:x^2+y^2=1,存在b,使自A(3,3)发出的光线被直 2020-06-09 …
若a,b,c为△ABC的三边,且(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)为 2020-06-12 …
如图,已知直线OA的解析式为y=x,直线AC垂直x轴于点C,点C的坐标为(2,0),直线OA关于直 2020-06-14 …
已知圆C:(X-1)^2+Y^2=9内有一点P(2,2),过点P作直线L交圆C于A、B两点.(1) 2020-07-25 …
某厂生产产品x件的总成本c(x)=1200+2/75*x^3(万元),已知产品单价P(万元)与产品 2020-07-26 …
已知全集为R,集合A={x||x²-2x|<x},B={x|(4x+11)∕(x²-1)≥1},若 2020-07-30 …
一道数学难题,有两个直线L1:x/a+y/b=1L2:x/c+y/d=1设其交点为P为甚么x(1/a 2020-12-24 …
求与圆C:x^2+y^2-x+2y=0关于直线l:x-y+1=0对称的圆的方程设圆C的对称点C'(x 2021-01-04 …
已知动直线l:(m+3)x-(m+2)y+m=0,圆C:(x-3)^2+(y-4)^2=9求证:无论 2021-01-12 …