早教吧作业答案频道 -->其他-->
有2点M(-1,0),N(1,0)且P使向量MP*MN,向量PM*PM,向量NM*NP成公差小于0的等差数列.求(1)P的轨迹是什么曲线?(2)若P坐标为(X,Y),向量PM,PN夹角为Q求tanQ
题目详情
有2点M(-1,0),N(1,0)且P使向量MP*MN ,向量PM*PM ,向量NM*NP 成公差小于0的等差数列.
求(1)P的轨迹是什么曲线?
(2) 若P坐标为(X,Y),向量PM,PN夹角为Q 求tanQ
求(1)P的轨迹是什么曲线?
(2) 若P坐标为(X,Y),向量PM,PN夹角为Q 求tanQ
▼优质解答
答案和解析
(1)设P(x,y)
向量MP=(x+1,y) ,MN=(2,0) PM=(-1-x,-y) NM=(-2,0)
NP=(x-1,y)
所以MP*MN=2(x+1)
PM*PM=(1+x)^2+y^2
NM*NP=-2(x-1)
成等差就有2*PM*PM=MP*MN+NM*NP
即 2[(1+x)^2+y^2]=2(x+1)-2(x-1)
( x+1)^2+y^2=2
是以(-1,0)为圆心,根号2为半径的圆.
(2)cosQ=向量PM*PN/PM的模*PN的模
=(-x-1)(-x+1)+y^2/[(x+1)^2+y^2]^1/2*[(-x+1)^2+y^2]^1/2
=-2x/2*根号2*根号(2-4x)=-1/根号2*根号(2-4x)=-1/2*根号(1-2x)
tanQ=-根号(3-8x)
向量MP=(x+1,y) ,MN=(2,0) PM=(-1-x,-y) NM=(-2,0)
NP=(x-1,y)
所以MP*MN=2(x+1)
PM*PM=(1+x)^2+y^2
NM*NP=-2(x-1)
成等差就有2*PM*PM=MP*MN+NM*NP
即 2[(1+x)^2+y^2]=2(x+1)-2(x-1)
( x+1)^2+y^2=2
是以(-1,0)为圆心,根号2为半径的圆.
(2)cosQ=向量PM*PN/PM的模*PN的模
=(-x-1)(-x+1)+y^2/[(x+1)^2+y^2]^1/2*[(-x+1)^2+y^2]^1/2
=-2x/2*根号2*根号(2-4x)=-1/根号2*根号(2-4x)=-1/2*根号(1-2x)
tanQ=-根号(3-8x)
看了 有2点M(-1,0),N(1...的网友还看了以下:
已知动点P的轨迹到定点A(2,0)的距离和它到定直线x=2分之1的距离比为2⑴求动点P的轨迹方程⑵若 2020-03-30 …
以A为圆心,以2cosθ(<θ<)为半径的圆外有一点B,已知|AB|=2sinθ。设过点B且与圆A 2020-04-13 …
参数已知点A(√3,0)及圆C:x^2+y^2=4上一动点Q,线段AQ的中垂线交OQ于点P(1). 2020-05-17 …
已知动圆P过点F(0,14)且与直线y=−14相切.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)过点F作一条 2020-06-07 …
已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N,且,。(1) 2020-07-31 …
(2010•珠海二模)已知两圆Q1:(x+1)2+y2=54和Q2:(x-1)2+y2=454,动 2020-07-31 …
已知点F(p/2,0),直线L:x=-p/2,点M为L上的动点,过点M垂直于y轴的直线与线段MF的 2020-08-01 …
已知点F(1,0)和直线l:x=-1,动点P到直线l的距离等于到点F的距离.(1)求点P的轨迹C的方 2020-11-27 …
如图所示,光滑固定导体轨M、N水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合路,当一条形磁铁 2020-12-25 …
在平面直角坐标系xOy中,已知M(0,3),N(0,-3),平面上一动点P满足|PM|+|PN|=4 2020-12-25 …