早教吧作业答案频道 -->其他-->
有2点M(-1,0),N(1,0)且P使向量MP*MN,向量PM*PM,向量NM*NP成公差小于0的等差数列.求(1)P的轨迹是什么曲线?(2)若P坐标为(X,Y),向量PM,PN夹角为Q求tanQ
题目详情
有2点M(-1,0),N(1,0)且P使向量MP*MN ,向量PM*PM ,向量NM*NP 成公差小于0的等差数列.
求(1)P的轨迹是什么曲线?
(2) 若P坐标为(X,Y),向量PM,PN夹角为Q 求tanQ
求(1)P的轨迹是什么曲线?
(2) 若P坐标为(X,Y),向量PM,PN夹角为Q 求tanQ
▼优质解答
答案和解析
(1)设P(x,y)
向量MP=(x+1,y) ,MN=(2,0) PM=(-1-x,-y) NM=(-2,0)
NP=(x-1,y)
所以MP*MN=2(x+1)
PM*PM=(1+x)^2+y^2
NM*NP=-2(x-1)
成等差就有2*PM*PM=MP*MN+NM*NP
即 2[(1+x)^2+y^2]=2(x+1)-2(x-1)
( x+1)^2+y^2=2
是以(-1,0)为圆心,根号2为半径的圆.
(2)cosQ=向量PM*PN/PM的模*PN的模
=(-x-1)(-x+1)+y^2/[(x+1)^2+y^2]^1/2*[(-x+1)^2+y^2]^1/2
=-2x/2*根号2*根号(2-4x)=-1/根号2*根号(2-4x)=-1/2*根号(1-2x)
tanQ=-根号(3-8x)
向量MP=(x+1,y) ,MN=(2,0) PM=(-1-x,-y) NM=(-2,0)
NP=(x-1,y)
所以MP*MN=2(x+1)
PM*PM=(1+x)^2+y^2
NM*NP=-2(x-1)
成等差就有2*PM*PM=MP*MN+NM*NP
即 2[(1+x)^2+y^2]=2(x+1)-2(x-1)
( x+1)^2+y^2=2
是以(-1,0)为圆心,根号2为半径的圆.
(2)cosQ=向量PM*PN/PM的模*PN的模
=(-x-1)(-x+1)+y^2/[(x+1)^2+y^2]^1/2*[(-x+1)^2+y^2]^1/2
=-2x/2*根号2*根号(2-4x)=-1/根号2*根号(2-4x)=-1/2*根号(1-2x)
tanQ=-根号(3-8x)
看了 有2点M(-1,0),N(1...的网友还看了以下:
在锐角三角形中,abc分别为角ABC的对边,c=根号21b=4且BC边上的高h=2倍根号3(1)求角 2020-03-30 …
如图,三角形ABC为等边三角形,D是边BC上[除B,C外]的任意一点,角ADE=60度,且DE交角 2020-04-27 …
如图所示,ABCD是菱形,对角线AC与BD相交于点O,角ACD=30°,BD=6.(1)求证:三角 2020-05-16 …
立体几何三棱锥问题沿对角线AC将正方形ABCD折成三棱锥B—ACD.使二面角B—AC—D为直二面角 2020-06-21 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
如图,在三角形ABD中,AC⊥BD,垂足为C,AC=BC=CD1,求证:三角形ABD是等腰三角形如 2020-07-30 …
在三角形ABC中A,B,C分别为三个内角,a,b,c分别为三个角所对边已知2*根号2*(sin2A 2020-07-30 …
立体几何~`平面a与平面b垂直,其交线为直线CD,点A在平面a内,点B在平面b内,且AB=2,直线 2020-08-02 …
三角形ABC,关于x的方程ax^2-2((c^2-b^2)^0.5)*x-b=0,(a>c>b)的两 2020-11-02 …
1、向量m=(a,2),n=(1,b-1),a>0,b>0,m,n的夹角为π/2,求1/a+2/b的 2020-11-24 …