早教吧作业答案频道 -->其他-->
有2点M(-1,0),N(1,0)且P使向量MP*MN,向量PM*PM,向量NM*NP成公差小于0的等差数列.求(1)P的轨迹是什么曲线?(2)若P坐标为(X,Y),向量PM,PN夹角为Q求tanQ
题目详情
有2点M(-1,0),N(1,0)且P使向量MP*MN ,向量PM*PM ,向量NM*NP 成公差小于0的等差数列.
求(1)P的轨迹是什么曲线?
(2) 若P坐标为(X,Y),向量PM,PN夹角为Q 求tanQ
求(1)P的轨迹是什么曲线?
(2) 若P坐标为(X,Y),向量PM,PN夹角为Q 求tanQ
▼优质解答
答案和解析
(1)设P(x,y)
向量MP=(x+1,y) ,MN=(2,0) PM=(-1-x,-y) NM=(-2,0)
NP=(x-1,y)
所以MP*MN=2(x+1)
PM*PM=(1+x)^2+y^2
NM*NP=-2(x-1)
成等差就有2*PM*PM=MP*MN+NM*NP
即 2[(1+x)^2+y^2]=2(x+1)-2(x-1)
( x+1)^2+y^2=2
是以(-1,0)为圆心,根号2为半径的圆.
(2)cosQ=向量PM*PN/PM的模*PN的模
=(-x-1)(-x+1)+y^2/[(x+1)^2+y^2]^1/2*[(-x+1)^2+y^2]^1/2
=-2x/2*根号2*根号(2-4x)=-1/根号2*根号(2-4x)=-1/2*根号(1-2x)
tanQ=-根号(3-8x)
向量MP=(x+1,y) ,MN=(2,0) PM=(-1-x,-y) NM=(-2,0)
NP=(x-1,y)
所以MP*MN=2(x+1)
PM*PM=(1+x)^2+y^2
NM*NP=-2(x-1)
成等差就有2*PM*PM=MP*MN+NM*NP
即 2[(1+x)^2+y^2]=2(x+1)-2(x-1)
( x+1)^2+y^2=2
是以(-1,0)为圆心,根号2为半径的圆.
(2)cosQ=向量PM*PN/PM的模*PN的模
=(-x-1)(-x+1)+y^2/[(x+1)^2+y^2]^1/2*[(-x+1)^2+y^2]^1/2
=-2x/2*根号2*根号(2-4x)=-1/根号2*根号(2-4x)=-1/2*根号(1-2x)
tanQ=-根号(3-8x)
看了 有2点M(-1,0),N(1...的网友还看了以下:
已知三角形ABC,角ABC的对边是abc,向量m=(a,b),向量n=(sinB,2si已知三角形 2020-05-16 …
已知集合向量M={第一象限角},向量N={锐角},向量P={小于90°角},则下列关系式中正确的是 2020-05-16 …
顺便将有关知识点名称也告诉我,已知向量m=(1,1),向量n与向量m的夹角为135度,且向量m*n 2020-05-21 …
在三角形ABC中的内角A、B、C的对边分别为a,b,c,定义向量m=(2SinB,-根号3),向量 2020-07-21 …
已知向量m=(1,1),向量n与向量m的夹角为3/4pai,且向量m*向量n=-1(1)求向量n( 2020-07-22 …
向量与三角函数的乘积已知A、B、C是三角形ABC的三个内角,向量m=(2,-2根号3),向量n=( 2020-07-28 …
向量m=(cos(A-B),sin(A-B)),向量n=(cosB,-sinB),且向量m*向量n 2020-07-30 …
数学三角形向量在三角形ABC中内角ABC的对边分别为abc已知向量m=(sinA,cosA)向量n= 2020-11-20 …
一道高三一轮向量变形题家庭作业啊急!已知向量m=(1,1),向量n与m的夹角为3/4派,且m*n=- 2020-12-03 …
已知向量OA的模=1,向量OB的模=根号2,向量OA垂直于向量OB,点C在角AOB内,且角AOB=4 2020-12-18 …