早教吧作业答案频道 -->数学-->
把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.
题目详情
把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.

(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.

(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是矩形,
∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,
∵△BEH是△BAH翻折而成,
∴∠ABH=∠EBH,∠A=∠HEB=90°,AB=BE,
∵△DGF是△DGC翻折而成,
∴∠FDG=∠CDG,∠C=∠DFG=90°,CD=DF,
∴∠DBH=
∠ABD,∠BDG=
∠BDC,
∴∠DBH=∠BDG,
∴△BEH与△DFG中,
∠HEB=∠DFG,BE=DF,∠DBH=∠BDG,
∴△BEH≌△DFG,
(2)∵四边形ABCD是矩形,AB=6cm,BC=8cm,
∴AB=CD=6cm,AD=BC=8cm,
∴BD=
=
=10,
∵由(1)知,FD=CD,CG=FG,
∴BF=10-6=4cm,
设FG=x,则BG=8-x,
在Rt△BGF中,
BG2=BF2+FG2,即(8-x)2=42+x2,解得x=3,即FG=3cm.
∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,
∵△BEH是△BAH翻折而成,
∴∠ABH=∠EBH,∠A=∠HEB=90°,AB=BE,
∵△DGF是△DGC翻折而成,
∴∠FDG=∠CDG,∠C=∠DFG=90°,CD=DF,
∴∠DBH=
| 1 |
| 2 |
| 1 |
| 2 |
∴∠DBH=∠BDG,
∴△BEH与△DFG中,
∠HEB=∠DFG,BE=DF,∠DBH=∠BDG,
∴△BEH≌△DFG,
(2)∵四边形ABCD是矩形,AB=6cm,BC=8cm,
∴AB=CD=6cm,AD=BC=8cm,
∴BD=
| BC2+CD2 |
| 82+62 |
∵由(1)知,FD=CD,CG=FG,
∴BF=10-6=4cm,
设FG=x,则BG=8-x,
在Rt△BGF中,
BG2=BF2+FG2,即(8-x)2=42+x2,解得x=3,即FG=3cm.
看了 把一张矩形ABCD纸片按如图...的网友还看了以下:
在长方形ABCD中,AB=3cmBC=4cm点p沿边按A-B-C-D得方向运动到点D,(但不与A. 2020-04-26 …
如图,在边长为2的正六边形ABCDEF的边上,点P从起点A沿顺时针方向以每秒1个单位的速度运动,则 2020-05-13 …
如图,正方形ABCD中,点E从点A出发沿着线段AD向点D运动(点E不与点A、点D重合),同时,点F 2020-07-15 …
如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合) 2020-07-17 …
如图,△ABC中,AB=6,BC=8,tan∠B=43,点D是边BC上的一个动点(点D与点B不重合 2020-07-20 …
如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点D与点A、B 2020-07-20 …
在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥ 2020-07-27 …
如图,已知BC为圆o的直径,D是直径BC上的一动点(不与点B.O.C重合),过点D作直线AH垂直B 2020-07-31 …
点的集合M={(x,y)|xy>0}是指()A.第一象限内点的集合B.第三象限内点的集合C.第一、 2020-07-31 …
如图1,将三角形纸片ABC沿折痕AD折叠,使得点C落在AB边的点G上,展开纸片沿折痕EF再次折叠,使 2021-01-22 …