早教吧 育儿知识 作业答案 考试题库 百科 知识分享

把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.

题目详情
把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.

(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是矩形,
∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,
∵△BEH是△BAH翻折而成,
∴∠ABH=∠EBH,∠A=∠HEB=90°,AB=BE,
∵△DGF是△DGC翻折而成,
∴∠FDG=∠CDG,∠C=∠DFG=90°,CD=DF,
∴∠DBH=
1
2
∠ABD,∠BDG=
1
2
∠BDC,
∴∠DBH=∠BDG,
∴△BEH与△DFG中,
∠HEB=∠DFG,BE=DF,∠DBH=∠BDG,
∴△BEH≌△DFG,
(2)∵四边形ABCD是矩形,AB=6cm,BC=8cm,
∴AB=CD=6cm,AD=BC=8cm,
∴BD=
BC2+CD2
=
82+62
=10,
∵由(1)知,FD=CD,CG=FG,
∴BF=10-6=4cm,
设FG=x,则BG=8-x,
在Rt△BGF中,
BG2=BF2+FG2,即(8-x)2=42+x2,解得x=3,即FG=3cm.