早教吧作业答案频道 -->数学-->
如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=
题目详情
如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.

(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.

(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.
▼优质解答
答案和解析
(1)由题中条件可得△AED∽△BCE,
∴
=
,
∵AE=x,BC=y,AB=4,AD=1
∴BE=4-x,
∴
=
,
∴y=-x2+4x(0<x<4);
(2)∵DE⊥EC,
∴∠DEC=90°,
又∵DF=FC,
∴DC=2EF=2×2.5=5,
过D点作DH⊥BN于H,则DH=AB=4,
∴Rt△DHC中,HC=
=
=3,
∴BC=BH+HC=1+3=4,即y=4,
∴-x2+4x=4
解得:x1=x2=2,
∴AE=2;
(3)△BCE的周长不变.理由如下:
C△AED=AE+DE+AD=4+x,BE=4-x,
设AD=m,则DE=4-m,
∵∠A=90°,
∴DE2=AE2+AD2即,(4-m)2=x2+m2
∴m=
,
由(1)知:△AED∽△BCE,
∴
=
=
=
∴C△BCE=
•C△ADE=
•(4+x)=8
∴△BCE的周长不变.
∴
AD |
BE |
AE |
BC |
∵AE=x,BC=y,AB=4,AD=1

∴BE=4-x,
∴
1 |
4−x |
x |
y |
∴y=-x2+4x(0<x<4);
(2)∵DE⊥EC,
∴∠DEC=90°,
又∵DF=FC,
∴DC=2EF=2×2.5=5,
过D点作DH⊥BN于H,则DH=AB=4,
∴Rt△DHC中,HC=
DC2−DH2 |
52−42 |
∴BC=BH+HC=1+3=4,即y=4,
∴-x2+4x=4
解得:x1=x2=2,
∴AE=2;
(3)△BCE的周长不变.理由如下:
C△AED=AE+DE+AD=4+x,BE=4-x,
设AD=m,则DE=4-m,
∵∠A=90°,
∴DE2=AE2+AD2即,(4-m)2=x2+m2
∴m=
16−x2 |
8 |
由(1)知:△AED∽△BCE,
∴
C△ADE |
C△BCE |
AD |
BE |
| ||
4−x |
4+x |
8 |
∴C△BCE=
8 |
4+x |
8 |
4+x |
∴△BCE的周长不变.
看了 如图,已知AM∥BN,∠A=...的网友还看了以下:
选出下列词中[]部分发音不同的单词1.A.[a]nyB.sh[a]peC.[e]lseD.[a]n 2020-05-14 …
已知字母组合成英语单词1、e e t t i n h r 2、e e r a t w h 3、o 2020-05-14 …
已知a+b+c=H a+b+e=J a+d+e=K b+c+d=M c+d+e=N 求a=?b=? 2020-05-16 …
1.e为方阵A的特征值,则矩阵kA,A的平方,aA+bE,A的m次方,A的逆,A的伴随阵分别有特征 2020-06-18 …
懂英文的看这个是什么意思?Education1997.9-2000.6Dept.Automatio 2020-06-28 …
重组字母为单词e,e,r,w,he,e,r,t,he,e,se,a,sw,m,s,ir,t,p,i 2020-07-09 …
(1)电子所受静电引力是万有引力的多少倍?(2)电子绕核旋转的周期和线速度各是多少?氢原子由一个质 2020-07-12 …
惫设f(x)=-m(m+e)x2,g(x)=x2+(m-1)x-m,其中e均自然对数的底数,若∃x 2020-08-02 …
MATLAB非线性方程组问题.M文件有了,问题是工作区的代码怎么写啊,最好能输出到EXCEL中.fu 2020-11-01 …
js中的竖线是什么意思('GN="";81e(M,h){9(N!=""){7(N).r="Y"}9( 2021-02-04 …