早教吧作业答案频道 -->数学-->
如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=
题目详情
如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.

(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.

(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.
▼优质解答
答案和解析
(1)由题中条件可得△AED∽△BCE,
∴
=
,
∵AE=x,BC=y,AB=4,AD=1
∴BE=4-x,
∴
=
,
∴y=-x2+4x(0<x<4);
(2)∵DE⊥EC,
∴∠DEC=90°,
又∵DF=FC,
∴DC=2EF=2×2.5=5,
过D点作DH⊥BN于H,则DH=AB=4,
∴Rt△DHC中,HC=
=
=3,
∴BC=BH+HC=1+3=4,即y=4,
∴-x2+4x=4
解得:x1=x2=2,
∴AE=2;
(3)△BCE的周长不变.理由如下:
C△AED=AE+DE+AD=4+x,BE=4-x,
设AD=m,则DE=4-m,
∵∠A=90°,
∴DE2=AE2+AD2即,(4-m)2=x2+m2
∴m=
,
由(1)知:△AED∽△BCE,
∴
=
=
=
∴C△BCE=
•C△ADE=
•(4+x)=8
∴△BCE的周长不变.
∴
AD |
BE |
AE |
BC |
∵AE=x,BC=y,AB=4,AD=1

∴BE=4-x,
∴
1 |
4−x |
x |
y |
∴y=-x2+4x(0<x<4);
(2)∵DE⊥EC,
∴∠DEC=90°,
又∵DF=FC,
∴DC=2EF=2×2.5=5,
过D点作DH⊥BN于H,则DH=AB=4,
∴Rt△DHC中,HC=
DC2−DH2 |
52−42 |
∴BC=BH+HC=1+3=4,即y=4,
∴-x2+4x=4
解得:x1=x2=2,
∴AE=2;
(3)△BCE的周长不变.理由如下:
C△AED=AE+DE+AD=4+x,BE=4-x,
设AD=m,则DE=4-m,
∵∠A=90°,
∴DE2=AE2+AD2即,(4-m)2=x2+m2
∴m=
16−x2 |
8 |
由(1)知:△AED∽△BCE,
∴
C△ADE |
C△BCE |
AD |
BE |
| ||
4−x |
4+x |
8 |
∴C△BCE=
8 |
4+x |
8 |
4+x |
∴△BCE的周长不变.
看了 如图,已知AM∥BN,∠A=...的网友还看了以下:
如图,数轴上点A,B,D对应点的数分别是-400.200-800,动点P,Q分别从点D,O同时出发 2020-06-12 …
已知O为坐标原点,F为抛物线C:y2=4x的焦点,P为抛物线C上一点,若|PF|=4,则△POF的 2020-07-14 …
反比例函数y=kx(x>0)的图象如图,点A是图象上的点,连接OA并延长到B,使得BA=OA,BC 2020-07-20 …
四边形ABCD是直角梯形上底DC=3下底AB=9线段DE,EF把梯形分成面积相等三块,四边形ABC 2020-07-30 …
已知曲线C的参数方程为x=3cosθy=2sinθ(θ为参数),在同一平面直角坐标系中,将曲线C上 2020-07-31 …
已知A(1,0),B(-1,0),P是平面上一动点,且满足|PA|×|BA|=PB×AB(1)求点 2020-07-31 …
已知曲线C:xy=1,过C上一点An(Xn,Yn)作一斜率为Kn=-1/(Xn+2)的直线交曲线C 2020-08-01 …
已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在已知 2020-08-01 …
如图,三点A,B,D在数轴上,点A,B在数轴上表示的数分别为-12,16.(1)点C在数轴上,满足A 2020-11-19 …
某质点作匀变速曲线运动,依次经过A、B、C三点,运动轨迹如图所示.已知过B点切线与AC连线平行,D点 2020-12-09 …