早教吧作业答案频道 -->其他-->
在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥AB时,点D与点A重合,显然DE2=AD2+BE2(不必证明);(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2;(3)当点D在BA的延
题目详情

(1)当CE⊥AB时,点D与点A重合,显然DE2=AD2+BE2(不必证明);
(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2;
(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.
▼优质解答
答案和解析
(1)∵CE⊥AB,
∴AE=BE,
∵点D与点A重合,
∴AD=0,
∴DE2=AD2+BE2;
(2)证明:过点A作AF⊥AB,使AF=BE,连接DF,CF,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠B=45°,
∴∠FAC=45°,
∴△CAF≌△CBE(SAS),
∴CF=CE,
∠ACF=∠BCE,
∵∠ACB=90°,∠DCE=45°,
∴∠ACD+∠BCE=∠ACB-∠DCE=90°-45°=45°,
∵∠ACF=∠BCE,
∴∠ACD+∠ACF=45°,
即∠DCF=45°,
∴∠DCF=∠DCE,
又∵CD=CD,
∴△CDF≌△CDE(SAS),
∴DF=DE,
∵AD2+AF2=DF2,
∴AD2+BE2=DE2;
(3)结论仍然成立;如图,
证明:过点A作AF⊥AB,使AF=BE,连接DF,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠B=45°,
∴∠FAC=45°,
∴△CAF≌△CBE(SAS),
∴CF=CE,
∠ACF=∠BCE,
∵∠BCE+∠ACE=90°,
∴∠ACF+∠ACE=90°,即∠FCE=90°,
∵∠DCE=45°,
∴∠DCF=45°,
∴∠DCF=∠DCE,
又∵CD=CD,
∴△CDF≌△CDE(SAS),
∴DF=DE,
∵AD2+AF2=DF2,
∴AD2+BE2=DE2.

∴AE=BE,
∵点D与点A重合,
∴AD=0,
∴DE2=AD2+BE2;
(2)证明:过点A作AF⊥AB,使AF=BE,连接DF,CF,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠B=45°,
∴∠FAC=45°,
∴△CAF≌△CBE(SAS),
∴CF=CE,
∠ACF=∠BCE,

∵∠ACB=90°,∠DCE=45°,
∴∠ACD+∠BCE=∠ACB-∠DCE=90°-45°=45°,
∵∠ACF=∠BCE,
∴∠ACD+∠ACF=45°,
即∠DCF=45°,
∴∠DCF=∠DCE,
又∵CD=CD,
∴△CDF≌△CDE(SAS),
∴DF=DE,
∵AD2+AF2=DF2,
∴AD2+BE2=DE2;
(3)结论仍然成立;如图,
证明:过点A作AF⊥AB,使AF=BE,连接DF,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠B=45°,
∴∠FAC=45°,
∴△CAF≌△CBE(SAS),
∴CF=CE,
∠ACF=∠BCE,

∵∠BCE+∠ACE=90°,
∴∠ACF+∠ACE=90°,即∠FCE=90°,
∵∠DCE=45°,
∴∠DCF=45°,
∴∠DCF=∠DCE,
又∵CD=CD,
∴△CDF≌△CDE(SAS),
∴DF=DE,
∵AD2+AF2=DF2,
∴AD2+BE2=DE2.
看了 在△ABC中,AC=BC,∠...的网友还看了以下:
初二几何四边形——等腰三角形在等腰梯形ABCD中,AD平行BC,AB=DC,P为底边BC上一点,P 2020-04-26 …
已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>√(BC+CD 2020-05-13 …
如图在三角形ABC中,D是BC上一点,E是AC上一点,且满足AD=AB,角ADE=角C1,如图在三 2020-05-15 …
已知在正方形ABCD中,E是BC边上的中点,点F在CD上,∠FAE=∠BAE,求证AF=BC=FC 2020-05-16 …
E是平行四边形ABCD中BC上的中点AE交BD于F三角形BEF的面积是1则平行四边形ABCD的面积 2020-06-05 …
在三棱锥SABC中,SA⊥平面ABC,SA=AB=AC=BC,点D是BC边的中点,点E是线段AD上 2020-06-09 …
如图,在△ABC中,AB=AC(1)P为BC上的中点,求证:AB2-AP2=PB•PC;(2)若P 2020-06-12 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F 2020-07-20 …
如图,在△ABC中,AB=AC,AD⊥BC于点D,点P在BC上,PE⊥BC,交BA的延长线于点E, 2020-08-03 …