早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点D与点A、B不重合),过点D作DE⊥AB交射线AC于E,连接BE,点F是BE的中点,连接CD、CF、DF.(1)当点E在边AC上(点E与点C不重合
题目详情
如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点D与点A、B不重合),过点D作DE⊥AB交射线AC于E,连接BE,点F是BE的中点,连接CD、CF、DF.

(1)当点E在边AC上(点E与点C不重合)时,设AD=x,CE=y.
①直接写出y关于x的函数关系式及定义域;
②求证:△CDF是等边三角形;
(2)如果BE=2
,请直接写出AD的长.

(1)当点E在边AC上(点E与点C不重合)时,设AD=x,CE=y.
①直接写出y关于x的函数关系式及定义域;
②求证:△CDF是等边三角形;
(2)如果BE=2
7 |
▼优质解答
答案和解析
(1)①∵∠A=60°,DE⊥AB,
∴∠AED=90°-60°=30°,
∴AE=2AD=2x,
又AC=AE+CE,
即3=2x+y,
∴y=-2x+3;定义域:0<x<
;…(2分)
②证明:在Rt△ECB和Rt△EDB中,∠ECB=∠EDB=90°.
∵点F是BE的中点,
∴CF=DF=
BE=BF.…(1分)
∴∠FCB=∠CBF,∠FDB=∠DBF.…(1分)
∴∠CFE=2∠CBF,∠DFE=2∠DBF.
∴∠CFE+∠DFE=2(∠CBF+∠DBF).
即∠CFD=2∠CBA.…(1分)
∵∠A=60°,∴∠ABC=90°-60°=30°.
∴∠CFD=60°.…(1分)
∴△CDF是等边三角形.…(1分)
(2)∵∠ACB=90°,∠A=60°,AC=3,
∴BC=3tan60°=3
,
在Rt△BCE中,CE=
=
=1,
当点E在AC上时,AD=
AE=
(3-1)=1,
当点E在射线AC上时,AD=
AE=
(3+1)=2,
∴AD的长是1或2. …(一解正确得2分;两解正确得3分)
∴∠AED=90°-60°=30°,
∴AE=2AD=2x,
又AC=AE+CE,
即3=2x+y,
∴y=-2x+3;定义域:0<x<
3 |
2 |
②证明:在Rt△ECB和Rt△EDB中,∠ECB=∠EDB=90°.
∵点F是BE的中点,
∴CF=DF=
1 |
2 |
∴∠FCB=∠CBF,∠FDB=∠DBF.…(1分)
∴∠CFE=2∠CBF,∠DFE=2∠DBF.
∴∠CFE+∠DFE=2(∠CBF+∠DBF).
即∠CFD=2∠CBA.…(1分)
∵∠A=60°,∴∠ABC=90°-60°=30°.
∴∠CFD=60°.…(1分)
∴△CDF是等边三角形.…(1分)
(2)∵∠ACB=90°,∠A=60°,AC=3,
∴BC=3tan60°=3
3 |
在Rt△BCE中,CE=
BE2−BC2 |
(2
|
当点E在AC上时,AD=
1 |
2 |
1 |
2 |
当点E在射线AC上时,AD=
1 |
2 |
1 |
2 |
∴AD的长是1或2. …(一解正确得2分;两解正确得3分)
看了 如图,在△ABC中,∠ACB...的网友还看了以下:
如图,在平行四边形ABCD中,AD=2AB=6cm,BE是∠ABC的角平分线,点M从点E出发,沿E 2020-05-13 …
在矩形ABCD中,AD=12cm,点P在AD边以1cm/s的速度从点A向点D运动,点Q从C点出发, 2020-06-12 …
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出 2020-06-15 …
如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒( 2020-07-14 …
如图,已知正方形ABCD,AB=4,动点M、N分别从D、B两点同时出发,且都以1个单位/秒的速度匀 2020-07-19 …
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出 2020-08-03 …
(2004•南平)如图1,正方形ABCD的边长为2厘米,点E从点A开始沿AB边移动到点B,点F从点B 2020-11-12 …
某质点作匀变速曲线运动,依次经过A、B、C三点,运动轨迹如图所示.已知过B点切线与AC连线平行,D点 2020-12-09 …
积极参加社会公益活动,服务社会,是我们培养社会责任感的良好方式。下列属于社会公益活动的有[]A.参加 2020-12-10 …
请问谁知道用matlab求解多元超越方程组的方法或思路或函数不?形如:a*(1+a+a^3+d+d^ 2020-12-14 …