早教吧作业答案频道 -->其他-->
(2010•上海模拟)已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数.(1)求k的值;(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R
题目详情
(2010•上海模拟)已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数.
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值.
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值.
▼优质解答
答案和解析
(1)∵z1=log2(2x+1)+ki,z2=1-xi
∴z1•z2=[log2(2x+1)+ki]•(1-xi)
=[log2(2x+1)+kx]+[k-x•log2(2x+1)+ki]i
f(x)=log2(2x+1)+kx
设定义域R中任意实数,由函数f(x)是偶函数
得:f(-x)=f(x)恒成立
∴log2(2x+1)-kx=log2(2x+1)+kx
2kx=log2(
)=-x
(2k+1)x=0
得:k=-
(2)由(1)可知f(x)=log2(2x+1)-
x,
所以y=f(log2x)=log2(x+1)-
log2x=log2
=
,
所以x∈(0,a],a>0,a∈R时,
ymin=
∴z1•z2=[log2(2x+1)+ki]•(1-xi)
=[log2(2x+1)+kx]+[k-x•log2(2x+1)+ki]i
f(x)=log2(2x+1)+kx
设定义域R中任意实数,由函数f(x)是偶函数
得:f(-x)=f(x)恒成立
∴log2(2x+1)-kx=log2(2x+1)+kx
2kx=log2(
2−x−1 |
2x+1 |
(2k+1)x=0
得:k=-
1 |
2 |
(2)由(1)可知f(x)=log2(2x+1)-
1 |
2 |
所以y=f(log2x)=log2(x+1)-
1 |
2 |
x+1 | ||
|
log | (
2 |
所以x∈(0,a],a>0,a∈R时,
ymin=
|
看了 (2010•上海模拟)已知复...的网友还看了以下:
计算题(P/A,10%,4)=3.1699(P/F,10%,1)=0.9091(P/A,10%,5 2020-04-07 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
如何证明一个函数光滑(无限次可导)已知函数f(x),当x=0时f(0)=0,x不等于0时F(x)= 2020-06-18 …
已知A等于{a,b,c},B等于{-1,0,1},f是A到的映射,则满足f(a)+f(b)+f(c 2020-06-23 …
设函数f(x)在x=0的邻域内具有三阶导数,且limx→0(1+x+f(x)x)1x=e3(1)求 2020-07-20 …
一道高数证明题函数f属于[0,1],f(0)=f(1)=0,证明|积分(0,1)f(x)dx| 2020-07-20 …
构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1], 2020-07-26 …
填空题:1.设函数f(x)的二阶导函数在x=0连续.已知当x→0时,f(x)是比x高阶的无穷小量, 2020-08-01 …
求解微分方程:1=[f(1)-f(0)]*t^2+1/f'(x),要详细过程.不好意思,题目打错了 2020-08-02 …