早教吧作业答案频道 -->数学-->
在菱形ABCD中,AB=4,角BAD=120°,以A为顶点的△AEF为正三角形.且E在BC上,F在C主要是第二问过程.
题目详情
在菱形ABCD中,AB=4,角BAD=120°,以A为顶点的△AEF为正三角形.且E在BC上,F在C
主要是第二问过程.
主要是第二问过程.
▼优质解答
答案和解析
第一问你已明白就不多说了.
(2)为了方便运算我们用S1,S2,S3,S4,S5,S6分别代表四边形ABCD,四边形AECF,三角形CEF,三角形AEF,三角形ABE,三角形ADF的面积.则有以下关系S2=S1-(S5+S6),S3=S2-S4,所以欲求S2需求S5与S6,欲求S3需求S2与S4.那么我们先来求S2,S5,S6.
过点A分别作BC,CD的垂线AM,AN,垂足分别为M,N,则易证AM=AN=AB*sin∠B=2√3(AB=AD,∠B=∠D=60°)
S5=(1/2)(AM*BE)=(1/2)(AM*CF)=(1/2)[AM*(CD-DF)]=(1/2)(AM*CD)-(1/2)(AM*DF)
S6=(1/2)(AN*DF)=(1/2)(AM*DF)
所以S2=S1-(S5+S6)=AB^2*sin∠B-[(1/2)(AM*CD)-(1/2)(AM*DF)+(1/2)(AM*DF)]=AB^2*sin∠B-(1/2)(AB^2*sin∠B)=4√3
现在来求S3,S4
在三角形ABE中由正弦定理可得AE=AB*sin∠B/sin∠AEB(如果不知正弦定理可求AM与AE的关系,就可得AB与AE的关系)则S4=(1/2)(AE^2*sin∠EAF)=(1/2)[(AB*sin∠B/sin∠AEB)^2*sin∠EAF]=3√3/(sin∠EAF)^2
S3=S2-S4=4√3-3√3/(sin∠EAF)^2≤4√3-3√3/(sin90°)^2=√3
所以四边形AECF的面积恒值为4√3,
三角形CEF的面积是变量当AE⊥BC(或AF⊥CD)或BE=CE时有最大值√3
以上只是简解,具体过程自己组织.特别注意的是要写S3是随着什么的变化而变化的
(2)为了方便运算我们用S1,S2,S3,S4,S5,S6分别代表四边形ABCD,四边形AECF,三角形CEF,三角形AEF,三角形ABE,三角形ADF的面积.则有以下关系S2=S1-(S5+S6),S3=S2-S4,所以欲求S2需求S5与S6,欲求S3需求S2与S4.那么我们先来求S2,S5,S6.
过点A分别作BC,CD的垂线AM,AN,垂足分别为M,N,则易证AM=AN=AB*sin∠B=2√3(AB=AD,∠B=∠D=60°)
S5=(1/2)(AM*BE)=(1/2)(AM*CF)=(1/2)[AM*(CD-DF)]=(1/2)(AM*CD)-(1/2)(AM*DF)
S6=(1/2)(AN*DF)=(1/2)(AM*DF)
所以S2=S1-(S5+S6)=AB^2*sin∠B-[(1/2)(AM*CD)-(1/2)(AM*DF)+(1/2)(AM*DF)]=AB^2*sin∠B-(1/2)(AB^2*sin∠B)=4√3
现在来求S3,S4
在三角形ABE中由正弦定理可得AE=AB*sin∠B/sin∠AEB(如果不知正弦定理可求AM与AE的关系,就可得AB与AE的关系)则S4=(1/2)(AE^2*sin∠EAF)=(1/2)[(AB*sin∠B/sin∠AEB)^2*sin∠EAF]=3√3/(sin∠EAF)^2
S3=S2-S4=4√3-3√3/(sin∠EAF)^2≤4√3-3√3/(sin90°)^2=√3
所以四边形AECF的面积恒值为4√3,
三角形CEF的面积是变量当AE⊥BC(或AF⊥CD)或BE=CE时有最大值√3
以上只是简解,具体过程自己组织.特别注意的是要写S3是随着什么的变化而变化的
 看了 在菱形ABCD中,AB=4,...的网友还看了以下:
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
已知a、b是有理数,ab的绝对值等于—ab(ab不等于0),a+b的绝对值等于a的绝对值+b,用数 2020-05-15 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
证明方程x=asinx+b(a>0,b>0)至少有一个正根,并且不超过a+bf(x)在闭区间[0, 2020-07-20 …
f(x)在开区间(a,b)导数大于等于0,f(a)=0,为什么书上说f(x)在(a,b)上是大于0 2020-08-01 …
(2006•上海)已知函数y=x+ax有如下性质:如果常数a>0,那么该函数在(0,a]上是减函数, 2020-11-18 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …
仔细阅读下面问题的解法:设A=[0,1],若不等式21-x+a>0在A上有解,求实数a的取值范围.解 2021-01-22 …