早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2011•张家口一模)(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为BC上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法

题目详情
(2011•张家口一模)(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为
BC
上一动点,求证:PA=PB+PC.
下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.
证明:在AP上截取AE=CP,连接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圆周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为
BC
上一动点,求证:PA=PC+
2
PB.
(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为
BC
上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.
▼优质解答
答案和解析
证明:(1)延长BP至E,使PE=PC,
连接CE.∵∠1=∠2=60°,∠3=∠4=60°,
∴∠CPE=60°,
∴△PCE是等边三角形,
∴CE=PC,∠E=∠3=60°;
又∵∠EBC=∠PAC,
∴△BEC≌△APC,
∴PA=BE=PB+PC.(2分)

(2)过点B作BE⊥PB交PA于E.
∵∠1+∠2=∠2+∠3=90°
∴∠1=∠3,
又∵∠APB=45°,
∴BP=BE,∴PE=
2
PB;
又∵AB=BC,
∴△ABE≌△CBP,
∴PC=AE.
PA=AE+PE=PC+
2
PB.(4分)

(3)答:PA=PC+
3
PB;
证明:在AP上截取AQ=PC,
连接BQ,∵∠BAP=∠BCP,AB=BC,
∴△ABQ≌△CBP,
∴BQ=BP.
又∵∠APB=30°,
PQ=
3
PB
PA=PQ+AQ=
3
PB+PC(7分)