早教吧作业答案频道 -->数学-->
已知椭圆的焦点是F1,F2,P是椭圆上的一个动点,如果延长F1P到Q,使得PQ=PF2.|F1P|+|PF2|=2a(设a为横轴)现在|PQ|=|PF2|相当于|F1P|+|PQ|=2a而F1P,PQ同向,则即|F1P+PQ|=|F1Q|=2aQ即为到点P的距离为定值的点我知道
题目详情
已知椭圆的焦点是F1,F2,P是椭圆上的一个动点,如果延长F1P到Q,使得PQ=PF2.
|F1P|+|PF2|=2a (设a为横轴)
现在|PQ|=|PF2|
相当于|F1P|+|PQ|=2a
而F1P,PQ同向,则即|F1P+PQ|=|F1Q|=2a
Q即为到点P的距离为定值的点
我知道这个答案,但就是看不懂,为什么|F1P+PQ|=|F1Q|=|F1P|+|PF2|=2a 跟圆有什么关系到底怎么看的?我的逻辑思维好差的,
|F1P|+|PF2|=2a (设a为横轴)
现在|PQ|=|PF2|
相当于|F1P|+|PQ|=2a
而F1P,PQ同向,则即|F1P+PQ|=|F1Q|=2a
Q即为到点P的距离为定值的点
我知道这个答案,但就是看不懂,为什么|F1P+PQ|=|F1Q|=|F1P|+|PF2|=2a 跟圆有什么关系到底怎么看的?我的逻辑思维好差的,
▼优质解答
答案和解析
由椭圆定义:椭圆上任意一点到两焦点的在距离之和为定值
|F1P|+|PF2|=2a (设a为横轴)
现在|PQ|=|PF2|
相当于|F1P|+|PQ|=2a
而F1P,PQ同向,则即|F1P+PQ|=|F1Q|=2a
Q即为到点P的距离为定值的点
轨迹为:圆心在椭圆上,半径为2a的圆
|F1P|+|PF2|=2a (设a为横轴)
现在|PQ|=|PF2|
相当于|F1P|+|PQ|=2a
而F1P,PQ同向,则即|F1P+PQ|=|F1Q|=2a
Q即为到点P的距离为定值的点
轨迹为:圆心在椭圆上,半径为2a的圆
看了 已知椭圆的焦点是F1,F2,...的网友还看了以下:
已知椭圆x^2/a^2+y^2/b^2=1,(a>b>0)的离心率为√2/2,点A(0,1)是椭圆 2020-05-15 …
已知椭圆中心在坐标原点,长轴在X轴,短轴等于6,长轴长是焦距的2倍.设直线Ax+By=1与椭圆相交 2020-05-15 …
已知椭圆的两个焦点F1(-根号3,0)F2(根号3,0),过F1且与坐标轴不平行的直线L1于椭圆交 2020-06-02 …
如图,⊙O的半径为3,点O到直线l的距离为5,点P是直线上的一个动点,PQ切⊙O于点Q,点P在直线 2020-06-12 …
已知椭圆C:x2a2+y2b2=1(a>b>0)过点(3,32),离心率e=12,若点M(x0,y 2020-06-21 …
(2014•长春模拟)如图F1、F2为椭圆C:x2a2+y2b2=1的左、右焦点,D、E是椭圆的两 2020-06-21 …
O为原点,PQ在椭圆C上O为原点,PQ在椭圆C:x2/a2+y2/b2=1(a>b>0)上,直线O 2020-06-21 …
如图,F1,F2为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,D,E是椭圆的两个顶点 2020-07-09 …
关于解析几何已知椭圆的方程为x^2/4+y^2/3=1,抛物线的方程为y^2=4x,直线l过椭圆的 2020-08-02 …
解析几何,点P在椭圆PQ+PR取值范围是点P在椭圆X^2/4+Y^2/3=1上运动,Q,R分别在圆 2020-08-02 …