早教吧作业答案频道 -->其他-->
设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,则称f(x)为定义在D上的下凸函数.(1)试判断函数g(x)=2x(x
题目详情
设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,则称f(x)为定义在D上的下凸函数.
(1)试判断函数g(x)=2x(x∈R),
是否为各自定义域上的下凸函数,并说明理由;
(2)若h(x)=px2(x∈R)是下凸函数,求实数p的取值范围;
(3)已知f(x)是R上的下凸函数,m是给定的正整数,设f(0)=0,f(m)=2m,记Sf=f(1)+f(2)+f(3)+…+f(m),对于满足条件的任意函数f(x),试求Sf的最大值.
(1)试判断函数g(x)=2x(x∈R),

(2)若h(x)=px2(x∈R)是下凸函数,求实数p的取值范围;
(3)已知f(x)是R上的下凸函数,m是给定的正整数,设f(0)=0,f(m)=2m,记Sf=f(1)+f(2)+f(3)+…+f(m),对于满足条件的任意函数f(x),试求Sf的最大值.
▼优质解答
答案和解析
(1)g(x)=2x是下凸函数,证明如下:
对任意实数x1,x2及α∈(0,1),
有g(αx1+(1-α)x2)-αg(x1)-(1-α)g(x2)=2(αx1+(1-α)x2)-2αx1-2(1-α)x2=0.
即g(αx1+(1-α)x2)≤αg(x1)+(1-α)g(x2).
∴g(x)=2x是C函数.
不是下凸函数,证明如下:
取x1=-3,x2=-1,
,
则k(αx1+(1-α)x2)-αk(x1)-(1-α)k(x2)=
.
即k(αx1+(1-α)x2)>αk(x1)+(1-α)k(x2).
∴
不是下凸函数.
(2)h(x)=px2是下凸函数,则对任意实数x1,x2及α∈(0,1),
有h(αx1+(1-α)x2)-αh(x1)-(1-α)h(x2)=p(αx1+(1-α)x2)2-pαx12-p(1-α)x22=p[-α(1-α)x12-α(1-α)x22+2α(1-α)x1x2]=-pα(1-α)(x1-x2)2≤0.
即当p≥0时,h(αx1+(1-α)x2)≤αh(x1)+(1-α)h(x2).
∴当p≥0时,h(x)=px2是下凸函数.
(3)对任意0≤n≤m,取x1=m,x2=0,
.
∵f(x)是R上的下凸函数,an=f(n),且a0=0,am=2m
∴an=f(n)=f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)=
.
那么Sf=a1+a2+…+am≤2×(1+2+…+m)=m2+m.
可证f(x)=2x是C函数,且使得an=2n(n=0,1,2,…,m)都成立,此时Sf=m2+m.
综上所述,Sf的最大值为m2+m.
对任意实数x1,x2及α∈(0,1),
有g(αx1+(1-α)x2)-αg(x1)-(1-α)g(x2)=2(αx1+(1-α)x2)-2αx1-2(1-α)x2=0.
即g(αx1+(1-α)x2)≤αg(x1)+(1-α)g(x2).
∴g(x)=2x是C函数.

取x1=-3,x2=-1,

则k(αx1+(1-α)x2)-αk(x1)-(1-α)k(x2)=

即k(αx1+(1-α)x2)>αk(x1)+(1-α)k(x2).
∴

(2)h(x)=px2是下凸函数,则对任意实数x1,x2及α∈(0,1),
有h(αx1+(1-α)x2)-αh(x1)-(1-α)h(x2)=p(αx1+(1-α)x2)2-pαx12-p(1-α)x22=p[-α(1-α)x12-α(1-α)x22+2α(1-α)x1x2]=-pα(1-α)(x1-x2)2≤0.
即当p≥0时,h(αx1+(1-α)x2)≤αh(x1)+(1-α)h(x2).
∴当p≥0时,h(x)=px2是下凸函数.
(3)对任意0≤n≤m,取x1=m,x2=0,

∵f(x)是R上的下凸函数,an=f(n),且a0=0,am=2m
∴an=f(n)=f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)=

那么Sf=a1+a2+…+am≤2×(1+2+…+m)=m2+m.
可证f(x)=2x是C函数,且使得an=2n(n=0,1,2,…,m)都成立,此时Sf=m2+m.
综上所述,Sf的最大值为m2+m.
看了 设f(x)是定义在D上的函数...的网友还看了以下:
设定义在R上的函数f(x)、g(x)满足f(x)g(x)=ax,且f′(x)g(x)>f(x)g′ 2020-04-07 …
请问食品添加剂中的“1+G”是啥意思? 2020-05-23 …
秒差是怎么定义的?1秒差等于多少光年? 2020-06-08 …
之的不同意思1.弈秋,通过之善弈者也.()2.惟弈秋之为听.()3.一人虽听之.()4.思援弓缴而 2020-06-23 …
前后反义的.1.()浅出()阴违()就轻两字重叠1.()皆是()本本 2020-06-24 …
1.已知函数f(x)的定义域是[1,5],求函数f(x²+1)的定义域2.已知函数f(2x²-1) 2020-06-25 …
1已知函数f(x)=1/√1-x^2的定义或为G,函数G(x)=1/√2+x-6x^2的定义或为H 2020-06-29 …
帮我找下这四句句子中没有语病和歧义的.1.我的家乡像跨上了骏马,日新月异地奔驰在社会主义道路上.2 2020-07-03 …
高数间断点问题设f(x)在R上连续,且f(x)不等于0,g(x)在R上有定义,且有间断点,则下列陈 2020-07-30 …
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x), 2020-08-02 …