早教吧作业答案频道 -->数学-->
将f(x)=1/(x^2+3x+2)在x=-4展开为幂级数
题目详情
将f(x)=1/(x^2+3x+2)在x=-4展开为幂级数
▼优质解答
答案和解析
利用Taylor公式f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+……
f(x)=1/(x^2+3x+2)=1/(x+1)+1/(x+2)
1/(x+1)=-[(1/3)+(X+4)/3^2+(X+4)^2/3^3+(X+4)^3/3^4+……+(X+4)^n/3^(n+1)+……]
1/(x+2)=-[(1/2)+(X+4)/2^2+(X+4)^2/2^3+(X+4)^3/2^4+……+(X+4)^n/2^(n+1)+……]
f(x)=-{(1/2+1/3)+(X+4)/[2^2+3^2]+ (X+4)^2/[2^3+3^3]+ (X+4)^3/[2^4+3^4]+………+
(X+4)^n/〔2^(n+1)+3^(n+1)〕+………}
f(x)=1/(x^2+3x+2)=1/(x+1)+1/(x+2)
1/(x+1)=-[(1/3)+(X+4)/3^2+(X+4)^2/3^3+(X+4)^3/3^4+……+(X+4)^n/3^(n+1)+……]
1/(x+2)=-[(1/2)+(X+4)/2^2+(X+4)^2/2^3+(X+4)^3/2^4+……+(X+4)^n/2^(n+1)+……]
f(x)=-{(1/2+1/3)+(X+4)/[2^2+3^2]+ (X+4)^2/[2^3+3^3]+ (X+4)^3/[2^4+3^4]+………+
(X+4)^n/〔2^(n+1)+3^(n+1)〕+………}
看了 将f(x)=1/(x^2+3...的网友还看了以下:
设z=f(x,y),且f(x,x^2)=x^3+1,f'x(x,x^2)=x^2-2x^3,则f' 2020-05-13 …
f(x)=1/3x^3+bx^2+cx+d,h(x+1-t)>h(2x+2)已知函数f(x)=1/ 2020-06-03 …
f(x+2)为奇函数,那么f(x+2)=-f(-x+2)?为什么呢?为什么不等于-f(-x-2)? 2020-06-09 …
已知函数fx的定义域为R,且对一切x∈R都有f(x+2)=f(2-x),f(x+7)=f(7-x) 2020-06-25 …
已知f(x)是周期为1的周期函数,在[0,1)上,f(x)=x^2,求f(x)在[0,2]上的表达 2020-07-23 …
设f(x)=x-1/x-2,则x=2为f(x)的()A.可去间断点B.连续点C.跳跃间断点D.无穷 2020-07-31 …
已知二次函数f(x)满足f(2+x)=f(2-x),又f(x)在0,2上是增函数,且f(a)>=f 2020-08-01 …
为何f(x+2)=f(-x+2)以及f(-x+2)=f(x+2)f(x+2)为偶函数,不应该是f(x 2020-11-07 …
∫f'(x^2)dx=x^5+C,求f(x),为什么(∫f'(x^2)dx)‘=f'(x^2),∫f 2020-12-09 …
问几道数学题1.已知f(x)=2x/x+2,求f[f(x)]答案是这样写的:f[f(x)]=f(2x 2020-12-19 …