早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,BD、CE为角平分线,P为ED上任意一点.过P分别作AC、AB、BC的垂线,M、N、Q为垂足.求证:PM+PN=PQ.

题目详情
在△ABC中,BD、CE为角平分线,P为ED上任意一点.过P分别作AC、AB、BC的垂线,M、N、Q为垂足.求证:PM+PN=PQ.
▼优质解答
答案和解析
证明:如图,过点P作AB的平行线交BD于F,过点F作BC的平行线分别交PQ、AC于K、G,连PG
∵BD平分∠ABC
∴点F到AB、BC两边距离相等
∴KQ=PN
EP
PD
=
BF
FD
=
CG
GD

∴PG∥EC
∵CE平分∠BCA
∴GP平分∠FGA
∴PK=PM
∴PM+PN=PK+KQ=PQ.