早教吧作业答案频道 -->数学-->
椭圆的一道题在线等已知椭圆(x^2/a^2)+y^2=1,直线l与椭圆交于A、B两点,M是线段AB的中点,连结OM并延长交椭圆于点C.⑴设直线AB与直线OM的斜率分别为K1、K2,且K1*K2=-1/4,求椭圆的离心率.⑵若直线
题目详情
▼优质解答
答案和解析
第1小题已算出,a=2 c=√ 3
所以,椭圆方程为:x^2/4+y^2=1
F坐标为:(√3,0)
设AB斜率为k,则直线方程为:y=k(x-√3)
代入x^2/4+y^2=1得:
x^2/4+k^2(x-√3)^2=1
(1+4k^2)x^2-8√3k^2x+12k^2-4=0
(x1+x2)/2=4√3k^2/(1+4k^2),
(y1+y2)/2=k(4√3k^2/(1+4k^2)-√3)= - √3k/(1+4k^2)
即:M点坐标为(4√3k^2/(1+4k^2),- √3k/(1+4k^2)
)
OACB是平行四边形,所以,M是OC中点
所以,C点坐标为(8√3k^2/(1+4k^2),- 2√3k/(1+4k^2)
C在椭圆上,
所以,48k^4/(1+4k^2)^2+12k^2/(1+4k^2)^2=1
32k^4+4k^2-1=0
(8k^2-1)(4k^2+1)=0
k^2=1/8
k=√2/4,或,k=-√2/4
所以,椭圆方程为:x^2/4+y^2=1
F坐标为:(√3,0)
设AB斜率为k,则直线方程为:y=k(x-√3)
代入x^2/4+y^2=1得:
x^2/4+k^2(x-√3)^2=1
(1+4k^2)x^2-8√3k^2x+12k^2-4=0
(x1+x2)/2=4√3k^2/(1+4k^2),
(y1+y2)/2=k(4√3k^2/(1+4k^2)-√3)= - √3k/(1+4k^2)
即:M点坐标为(4√3k^2/(1+4k^2),- √3k/(1+4k^2)
)
OACB是平行四边形,所以,M是OC中点
所以,C点坐标为(8√3k^2/(1+4k^2),- 2√3k/(1+4k^2)
C在椭圆上,
所以,48k^4/(1+4k^2)^2+12k^2/(1+4k^2)^2=1
32k^4+4k^2-1=0
(8k^2-1)(4k^2+1)=0
k^2=1/8
k=√2/4,或,k=-√2/4
看了椭圆的一道题在线等已知椭圆(x...的网友还看了以下:
椭圆的一道题在线等已知椭圆(x^2/a^2)+y^2=1,直线l与椭圆交于A、B两点,M是线段AB的 2020-03-30 …
已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4,(Ⅰ) 2020-05-14 …
已知椭C:x2a2+y2b2=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点 2020-05-14 …
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作 2020-06-21 …
(12分)已知椭圆,直线l与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.直 2020-07-24 …
设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,短轴上端点为B,连接BF并延长交椭圆于点A 2020-07-30 …
已知椭圆a=3,c=2,焦点在x轴上,过左焦点F,作斜率为k1的直线,交椭圆于A,B两点设R(1, 2020-07-31 …
如图,已知椭圆的长轴为AB,过点B的直线与轴垂直,椭圆的离心率,F为椭圆的左焦点,且(1)求此椭圆 2020-08-02 …
(本题满分13分)学科网已知椭圆,直线与椭圆交于、两点,是线段的中点,连接并延长交椭圆于点.设直线与 2020-12-18 …
从椭圆上一点A看椭圆的两焦点F1,F2的视角为直角,AF1的延长线交椭圆于B,且AB=AF2,则椭圆 2021-01-13 …