早教吧作业答案频道 -->数学-->
已知等差数列{an}的前n项和为Sn,a4=9,S3=15.(1)求Sn;(2)设数列{1Sn}的前n项和为Tn,证明:Tn<34.
题目详情
已知等差数列{an}的前n项和为Sn,a4=9,S3=15.
(1)求Sn;
(2)设数列{
}的前n项和为Tn,证明:Tn<
.
(1)求Sn;
(2)设数列{
| 1 |
| Sn |
| 3 |
| 4 |
▼优质解答
答案和解析
(1)设等差数列{an}的公差为d,
S3=
(a1+a3)×3=3a2=15⇒a2=5,
∴d=
=2,a1=3,
∴an=3+2(n-1)=2n+1,
Sn=
•n=n(n+2);
(2)证明:
=
(
-
),
则Tn=
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)=
-
(
+
)<
.
S3=
| 1 |
| 2 |
∴d=
| a4-a2 |
| 2 |
∴an=3+2(n-1)=2n+1,
Sn=
| 3+2n+1 |
| 2 |
(2)证明:
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
则Tn=
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
看了 已知等差数列{an}的前n项...的网友还看了以下:
等差数列与等比数列已知An是等差数列,其前n项和为Sn,Bn是等比数列,A1=B1,A4+B4=2 2020-05-14 …
a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项 2020-05-15 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
一道证明向量组线性相关的题假设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a 2020-05-16 …
已知数列{an}与{bn}满足:bnan+an+1+bn+1an+2=0,bn=3+(−1)n2, 2020-05-17 …
等差数列an中,a1=8,a4=2,设bn=n(12-an)分之1,Tn=b1+b2+.+bn,n 2020-07-09 …
已知数列An是等差数列,前n项和为Sn.Bn是等比数列,b1=a1,b4+a4=27,s4+b4= 2020-07-09 …
几道高数题,1.求lim(n→∞)sin^2(∏√(n^2+n))2.设f(x)在[a,+∞)上连 2020-07-31 …
一道线性代数问题设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组 2020-10-31 …
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,s 2020-10-31 …