早教吧作业答案频道 -->数学-->
已知函数f(x)=ex-ax-a(其中a∈R,e是自然对数的底数,e=2.71828…).(I)当a=e时,求函数f(x)的极值;(Ⅱ)当0≤a≤1时,求证f(x)≥0;(Ⅲ)求证:对任意正整数n,都有(1+12)(1+12
题目详情
已知函数f(x)=ex-ax-a(其中a∈R,e是自然对数的底数,e=2.71828…).
(I)当a=e时,求函数f(x)的极值;
(Ⅱ)当0≤a≤1时,求证f(x)≥0;
(Ⅲ)求证:对任意正整数n,都有(1+
)(1+
)…(1+
)<e.
(I)当a=e时,求函数f(x)的极值;
(Ⅱ)当0≤a≤1时,求证f(x)≥0;
(Ⅲ)求证:对任意正整数n,都有(1+
1 |
2 |
1 |
22 |
1 |
2n |
▼优质解答
答案和解析
(Ⅰ)当a=e时,f(x)=ex-ex-e,f′(x)=ex-e,
当x<1时,f′(x)<0;当x>1时,f′(x)>0;
所以函数f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,
所以函数f(x)在x=1处取得极小值f(1)=-e,函数f(x)无极大值;
(Ⅱ)由f(x)=ex-ax-a,f′(x)=ex-a
①当a=0时,f(x)=ex≥0恒成立,满足条件,
②当0则当x∈(-∞,lna)时,f′(x)<0,当x∈(lna,+∞)时,f′(x)>0,
∴函数f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
∴函数f(x)在x=lna处取得极小值即为最小值,
f(x)min=f(lna)=elna-alna-a=-alna
∵0min≥0,
∴综上得,当0≤a≤1时,f(x)≥0;
(Ⅲ)由(Ⅱ)知,当a=1时,f(x)≥0 恒成立,所以f(x)=ex-x-1≥0恒成立,
即ex≥x+1,∴ln(x+1)≤x,令x=
(n∈N+),得ln(1+
)≤
,
∴ln(1+
)+ln(1+
)+…+ln(1+
)≤
+
+…+
=
=1-(
)n<1,
∴(1+
)(1+
)…(1+
)<e.
当x<1时,f′(x)<0;当x>1时,f′(x)>0;
所以函数f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,
所以函数f(x)在x=1处取得极小值f(1)=-e,函数f(x)无极大值;
(Ⅱ)由f(x)=ex-ax-a,f′(x)=ex-a
①当a=0时,f(x)=ex≥0恒成立,满足条件,
②当0则当x∈(-∞,lna)时,f′(x)<0,当x∈(lna,+∞)时,f′(x)>0,
∴函数f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
∴函数f(x)在x=lna处取得极小值即为最小值,
f(x)min=f(lna)=elna-alna-a=-alna
∵0min≥0,
∴综上得,当0≤a≤1时,f(x)≥0;
(Ⅲ)由(Ⅱ)知,当a=1时,f(x)≥0 恒成立,所以f(x)=ex-x-1≥0恒成立,
即ex≥x+1,∴ln(x+1)≤x,令x=
1 |
2n |
1 |
2n |
1 |
2n |
∴ln(1+
1 |
2 |
1 |
22 |
1 |
2n |
1 |
2 |
1 |
22 |
1 |
2n |
| ||||
1-
|
1 |
2 |
∴(1+
1 |
2 |
1 |
22 |
1 |
2n |
看了 已知函数f(x)=ex-ax...的网友还看了以下:
知道一个f(x)与f(x)导数的关系式,以及f(x)=0,能否求f(x)?已知:e^x+2f(x) 2020-04-09 …
已知f(x)是2次函数.若f(0)=0.f(x+1)=f(x)+x+1,求f(x)..已知…已知f 2020-04-27 …
基本初等函数,在线等已知x∈[-3,2],求f(x)=(1/4X)-(1/2X)+1的最小和最大值 2020-04-27 …
1.求f(x)=x²-2x-3在下列区间上的值域①R②[-3,0]③[2,3]④[0,3]2.已知 2020-05-02 …
已知函数f(2ˆx -1)=2x-1,求f(x) 已知f(更号X +1)=x+2,求f(x)已知函 2020-05-13 …
函数定义域求解答.1.已知f(x)的定义域为{0.2}求函数f(2x-1)的定义域.2.已知f(2 2020-05-17 …
求下列各题中的函数f(x)的解析式(1)已知f(√x+2)=x+4√x,求f(x)(2)已知f(x 2020-06-02 …
已知f(x+x/1)=x^2+(1/x^2)+3,求f(x)已知f(x/x+1)=x^2+1/x^ 2020-06-07 …
用配凑法求以下解析式,已知f(x+1)=x^2-3x+2,求f(x)已知f(根号x+1)=x+2根 2020-06-20 …
3/y^2-1/(3次根号下x)+ln5主要是想知道1/3次根号下x的偏导数怎么求的,知道怎么做了 2020-07-21 …