早教吧作业答案频道 -->数学-->
已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否
题目详情
已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形ADE,连接CE.

(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、点E分别在直线BC的异侧,其他条件不变,直接写出BC、DC、CE之间存在的数量关系.

(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、点E分别在直线BC的异侧,其他条件不变,直接写出BC、DC、CE之间存在的数量关系.
▼优质解答
答案和解析
(1)①∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中
,
∴△ABD≌△ACE(SAS).
②∵△ABD≌△ACE,
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
(2)BC+CD=CE.
∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC+∠DAC=∠DAE+∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中
,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∵BD=BC+CD,
∴CE=BC+CD;
(3)DC=CE+BC.
∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠BAE=∠DAE-∠BAE,
∴∠BAD=∠EAC.
在△ABD和△ACE中
,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∵DC=BD+BC,
∴DC=CE+BC;
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中
|
∴△ABD≌△ACE(SAS).
②∵△ABD≌△ACE,
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
(2)BC+CD=CE.
∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC+∠DAC=∠DAE+∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中
|
∴△ABD≌△ACE(SAS).
∴BD=CE.
∵BD=BC+CD,
∴CE=BC+CD;
(3)DC=CE+BC.
∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠BAE=∠DAE-∠BAE,
∴∠BAD=∠EAC.
在△ABD和△ACE中
|
∴△ABD≌△ACE(SAS).
∴BD=CE.
∵DC=BD+BC,
∴DC=CE+BC;

看了 已知△ABC为等边三角形,点...的网友还看了以下:
如图1,抛物线y=-x2+2bx+c(b>0)与y轴交于点C,点P为抛物线顶点,分别作点P,C关于 2020-06-12 …
已知线段AB=4,点C是平面上一点(不与A,B重合),M、N分别是线段CA,CB的中点.(1)当C 2020-07-20 …
已知过点A(-4,0)的动直线l与抛物线C:x^2=2py(p>0)相交于B,C两点.当l的斜率是 2020-07-21 …
已知过点A(-4,0)的动直线L与抛物线C:X平方=2PY(p>0)相交于B.C两点.当L得斜率是 2020-07-21 …
如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm 2020-07-30 …
已知AB是半径为6的⊙O的直径,点C是⊙O的半径OA上的动点,PC⊥AB交⊙O于E,交OA于C,P 2020-07-31 …
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为三分之根号三,过右焦点F的直线L与C 2020-08-01 …
设向量OA=a,OB=b,OC=c,当c=λa+μb,且λ+μ=1时设向量OA=a,OB=b,OC= 2020-12-03 …
在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x.(a)当点P在AB间运 2020-12-17 …
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为三分之根号三,过右焦点F的直线L与C相 2021-01-13 …