早教吧 育儿知识 作业答案 考试题库 百科 知识分享

过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

题目详情
过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
▼优质解答
答案和解析
设M的坐标为(x,y),
则A、B两点的坐标分别是(2x,0),(0,2y),连接PM,
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=
(x−2)2+(y−4)2

|AB|=
(2x)2+(2y)2

∴2
(x−2)2+(y−4)2
4x2+4y2

化简,得x+2y-5=0即为所求的轨迹方程.