早教吧作业答案频道 -->数学-->
已知椭圆的焦点是F1(-1,0),F2(1,0),点P在以F1,F2为焦点的椭圆C上且PF1的绝对值,F1F2的绝对值,PF2的绝对值构成等差数列已知椭圆方程是x^2/4+y^2/3=1动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直
题目详情
已知椭圆的焦点是F1(-1,0),F2(1,0),点P在以F1,F2为焦点的椭圆C上
且PF1的绝对值,F1F2的绝对值,PF2的绝对值构成等差数列
已知椭圆方程是x^2/4+y^2/3=1
动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF1面积S的最大值
且PF1的绝对值,F1F2的绝对值,PF2的绝对值构成等差数列
已知椭圆方程是x^2/4+y^2/3=1
动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF1面积S的最大值
▼优质解答
答案和解析
F1M⊥l,F2N⊥l,F1M∥F2N,l的斜率为k,则F1M,F2N的斜率为-1/k
F1M的方程:x+ky+1=0(点斜式化为一般方程)
F2N的方程:x+ky-1=0
过原点O作OH⊥l,则OH为梯形F1MNF2的中位线
|MN|=|-1-1|/√(k^2+1)=2/√(k^2+1)
|OH|=|k*0-0+m|/√(k^2+1)=|m|/√(k^2+1)
四边形F1MNF2面积S=|OH|·|MN|=2|m|/(k^2+1)
直线l:y=kx+m与椭圆C有且仅有一个公共点,y=kx+m带入椭圆方程得:
(4k^2+3)x^2+8kmx+4m^2-12=0
Δ=64k^2m^2-4(4k^2+3)(4m^2-12)=0
m^2=4k^2+3
S^2=4m^2/(k^2+1)=4(4k^2+3)/(k^2+1)=16/(k^2+1)-4/(k^2+1)^2
设u=1/(k^2+1),0<u≤1
S^2=16u-4u^2=-4(u-2)^2+16
u=1时,取最大值S^2=12,S(max)=2√3
F1M的方程:x+ky+1=0(点斜式化为一般方程)
F2N的方程:x+ky-1=0
过原点O作OH⊥l,则OH为梯形F1MNF2的中位线
|MN|=|-1-1|/√(k^2+1)=2/√(k^2+1)
|OH|=|k*0-0+m|/√(k^2+1)=|m|/√(k^2+1)
四边形F1MNF2面积S=|OH|·|MN|=2|m|/(k^2+1)
直线l:y=kx+m与椭圆C有且仅有一个公共点,y=kx+m带入椭圆方程得:
(4k^2+3)x^2+8kmx+4m^2-12=0
Δ=64k^2m^2-4(4k^2+3)(4m^2-12)=0
m^2=4k^2+3
S^2=4m^2/(k^2+1)=4(4k^2+3)/(k^2+1)=16/(k^2+1)-4/(k^2+1)^2
设u=1/(k^2+1),0<u≤1
S^2=16u-4u^2=-4(u-2)^2+16
u=1时,取最大值S^2=12,S(max)=2√3
看了 已知椭圆的焦点是F1(-1,...的网友还看了以下:
点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方,PA⊥PF 2020-04-12 …
点A,B分别是椭圆x^2/36+y^20=1长轴的左,右两端点,点F是椭圆的右焦点,点P在椭圆上, 2020-04-12 …
1.点A,B分别是椭圆X^2/36+Y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆 2020-04-12 …
椭圆!已知椭圆x^2/36+y^2/20=1长轴的左右端点分别为A、B,点F是椭圆的右焦点,点P在 2020-04-12 …
(1)已知椭圆C x^2/2+y^2=1 的右焦点为F .O为坐标原点 (1)求过点O,F并且与直 2020-05-13 …
如图,椭圆的中心在坐标原点,长轴端点为A、B,右焦点为F,且AF•FB=1,|OF|=1.(Ⅰ)求 2020-06-21 …
求椭圆上一点坐标最小距离~点A、B分别是椭圆x/36+y/20=1长轴的左、右端点,点F说椭圆的右 2020-06-30 …
椭圆方程已知椭圆x^2/a^2+y^2/b^2=1(a>b>0,且b∈Z)的焦点为F(√5,0), 2020-07-31 …
(2014•东城区二模)已知椭圆x2a2+y2b2=1的一个焦点为F(2,0),且离心率为63.(Ⅰ 2020-11-01 …
(2012•乐山二模)如图,已知直线L:x=my+1过椭圆C:x2a2+y2b2=1(a>b>0)的 2020-11-12 …