早教吧作业答案频道 -->数学-->
椭圆与三角形内切圆圆心已知P为焦点在x轴椭圆上一个点(非长轴端点),且三角形PF1F2的内切圆圆心为I,连接PI并延长交x轴于Q点,那么该椭圆的离心率e=IQ/IP求解释
题目详情
椭圆与三角形内切圆圆心
已知P为焦点在x轴椭圆上一个点(非长轴端点),且三角形PF1F2的内切圆圆心为I,连接PI并延长交x轴于Q点,那么该椭圆的离心率e=IQ/IP
求解释
已知P为焦点在x轴椭圆上一个点(非长轴端点),且三角形PF1F2的内切圆圆心为I,连接PI并延长交x轴于Q点,那么该椭圆的离心率e=IQ/IP
求解释
▼优质解答
答案和解析
设内切圆半径为r,
S△IF1F2/S△PF1F2=IQ/PQ,
∴S△IF1F2/[S△PF1F2-S△IF1F2]=IQ/IP,
S△IF1F2=(1/2)|F1F2|r=cr,
S△PF1F2-S△IF1F2=(1/2)(PF1|+|PF2|r=ar,
∴IQ/IP=cr/(ar)=c/a=e.
S△IF1F2/S△PF1F2=IQ/PQ,
∴S△IF1F2/[S△PF1F2-S△IF1F2]=IQ/IP,
S△IF1F2=(1/2)|F1F2|r=cr,
S△PF1F2-S△IF1F2=(1/2)(PF1|+|PF2|r=ar,
∴IQ/IP=cr/(ar)=c/a=e.
看了 椭圆与三角形内切圆圆心已知P...的网友还看了以下:
如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)(1)若C为x轴正半轴上一动点,以 2020-05-16 …
抛物线y=ax的平方+bx+c经过a[-1,0]b[3,0]c[0,3]三点其顶点为d连接bd点p 2020-05-16 …
已知矩形OABC的一边OA在x轴上,OC在y轴上,O为坐标原点;连结OB;双曲线y=k/x交BC与 2020-05-17 …
如图,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧BC上一个动点 2020-06-12 …
如图,点E为x轴正半轴上一点,E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧BC上一个动点, 2020-07-18 …
如图所示,以等量同种点电荷的连线中点为原点,两点电荷连线的中垂线为x轴,E表示电场强度,φ表示电势 2020-07-20 …
设f(x)在点x=0处连续,若lim(1+f(x)/x)^(1/sinx)=e^2(x趋近于0),则 2020-11-11 …
(2014•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥ 2020-11-12 …
两个荷形成的电场中,以两电荷连线中点为坐标原点,某一方向为x轴.x轴上的电场强度E的大小与x的变化关 2020-11-30 …
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数 2021-01-13 …