早教吧作业答案频道 -->数学-->
如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40°,求∠CBF的度数;(2)求证:CD⊥DF.
题目详情
如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.

(1)若∠DFC=40°,求∠CBF的度数;
(2)求证:CD⊥DF.

(1)若∠DFC=40°,求∠CBF的度数;
(2)求证:CD⊥DF.
▼优质解答
答案和解析
(1)∵∠ADB=∠ACB,∠BAD=∠BFC,
∴∠ABD=∠FBC,
又∵AB=AD,
∴∠ABD=∠ADB,
∴∠CBF=∠BCF,
∵∠BFC=2∠DFC=80°,
∴∠CBF=
=50°;
(2)令∠CFD=α,则∠BAD=∠BFC=2α,
∵四边形ABCD是圆的内接四边形,
∴∠BAD+∠BCD=180°,即∠BCD=180°-2α,
又∵AB=AD,
∴∠ACD=∠ACB,
∴∠ACD=∠ACB=90°-α,
∴∠CFD+∠FCD=α+(90°-α)=90°,
∴∠CDF=90°,即CD⊥DF.
∴∠ABD=∠FBC,
又∵AB=AD,
∴∠ABD=∠ADB,
∴∠CBF=∠BCF,
∵∠BFC=2∠DFC=80°,
∴∠CBF=
180°-80° |
2 |
(2)令∠CFD=α,则∠BAD=∠BFC=2α,
∵四边形ABCD是圆的内接四边形,
∴∠BAD+∠BCD=180°,即∠BCD=180°-2α,
又∵AB=AD,
∴∠ACD=∠ACB,
∴∠ACD=∠ACB=90°-α,
∴∠CFD+∠FCD=α+(90°-α)=90°,
∴∠CDF=90°,即CD⊥DF.
看了 如图,已知四边形ABCD内接...的网友还看了以下:
D是线段AB的中点,C是线段AB的中垂线上一点,DE垂直AC于E,DF垂直BC于F.点C运动到什么 2020-04-27 …
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴的距离的差都是1.(1)求曲 2020-05-15 …
正方形ABCD的边长为6㎝,点E在AB上,AE=2㎝.动点F由点C开始以3㎝/s的速度沿折线CBE 2020-05-17 …
如图,已知在梯形ABCD中,AD∥BC,AB=CD,BC=8,∠B=60°,点M是边BC的中点,点 2020-06-13 …
如图(1),∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转 2020-06-13 …
如图,在Rt△ABC中,∠A=90°,∠B=30°,左右移动边长为根号3cm等边△DEF,使顶点E 2020-07-20 …
如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,∠QPN的两边分别与正方 2020-07-22 …
如果凸n边形F(n≥4)的所有对角线都相等,那么A.F∈{四边形}B.F∈{五边形}C.F∈{四边 2020-07-25 …
如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋 2020-07-30 …
在RT三角形ABC中,角C=90度角B=30度BC=4左右平移等边三角形DEF的两个顶点E、F,始 2020-08-03 …