早教吧作业答案频道 -->数学-->
几何证明难题,求证,已知如图,梯形ABCD中,AD‖BC,以两腰AB,CD为一边分别向两边作正方形ABGE和DCHF,设线段AD的垂直平分线l交线段EF于点M,EP⊥l于P,FQ⊥l于Q.求证:EP=FQ
题目详情
几何证明难题,求证,
已知如图,梯形ABCD中,AD‖BC,以两腰AB,CD为一边分别向两边作正方形ABGE和DCHF,设线段AD的垂直平分线l交线段EF于点M,EP⊥l于P,FQ⊥l于Q.
求证:EP=FQ
已知如图,梯形ABCD中,AD‖BC,以两腰AB,CD为一边分别向两边作正方形ABGE和DCHF,设线段AD的垂直平分线l交线段EF于点M,EP⊥l于P,FQ⊥l于Q.
求证:EP=FQ
▼优质解答
答案和解析
过A作BC和EP的垂线交点为a和b,过D作BC和FQ的垂线交点为c和d
∵∠CDF=90度
∴∠CDc+∠dDF=∠dFD+∠dDF=90度
∴∠CDc=∠dFD
又∵CD=DF
∴△CDc全等于△dDF
∴dF=cD
同理可证bE=aA
∵aA=cD
∴dF=bE
∵l是AD的垂直平分线
∴bP=dQ(这块跳步了,你看着书上相关定理再补充一下吧)
∴EP=bE+bP=dQ+dF=FQ
∵∠CDF=90度
∴∠CDc+∠dDF=∠dFD+∠dDF=90度
∴∠CDc=∠dFD
又∵CD=DF
∴△CDc全等于△dDF
∴dF=cD
同理可证bE=aA
∵aA=cD
∴dF=bE
∵l是AD的垂直平分线
∴bP=dQ(这块跳步了,你看着书上相关定理再补充一下吧)
∴EP=bE+bP=dQ+dF=FQ
看了 几何证明难题,求证,已知如图...的网友还看了以下:
下列表示大学新生报到入学的流程,正确的是()A.持通知书→验证→缴费→注册B.持通知书→验证→注册 2020-04-07 …
几道因式分解1.说明(a2+3a)(a2+3a+2)+1是一个完全平方公式.2.设n为大于1正整数 2020-04-10 …
(1)A、B均为n阶实对称正定矩阵,证明A-B正定则B^(-1)-A^(-1)亦正定(2)A、(1 2020-05-13 …
半正定矩阵已知E-A'A半正定.求证E-1/2(A'+A)半正定 2020-05-22 …
求解一道矩阵证明题求证:若A是正交矩阵,则|A|^2=1,且当|A|=-1时-1是A的一个特征值; 2020-06-12 …
试证方程x=asinx+b(a>0,b>0)至少有个正根,且不超过a+b.只知道从二分法证,具体怎 2020-06-14 …
关於分式因解*后是次方1.已知x*4+6x*3+7x*2+ax+b是一个完全平方式,求a,b的值2 2020-06-16 …
已知多项式x²+y²+A,我们知道无论x,y取什么数,总有x²+y²+A≥A,如若A大于零时,我们 2020-08-02 …
数学基本不等式1,已知a≥2求证:4/(a–2)+a≥62,已知正数xy满足2x+5y=20,则㏒ 2020-08-03 …
设f(x)=(x+2)/(x+1)sin1/x,a>0为任意正常数,证明:f(x)在(0,a)内非一 2021-01-12 …