设函数f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函
设函数f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.
①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].
如果函数f(x)=+k为闭函数,则k的取值范围是.
答案和解析
若函数f(x)=
+k为闭函数,则存在区间[a,b],
在区间[a,b]上,函数f(x)的值域为[a,b],
即,
∴a,b是方程x=+k的两个实数根,
即a,b是方程x2-(2k+2)x+k2-1=0(x≥−,x≥k)的两个不相等的实数根,
当k≤−时, | △=[−(2k+2)]2−4(k2−1)>0 | f(−)=+(2k+2)+k2−1≥0 | >− |
| |
解得,-1<k≤−;
当k>-时, | △=[−(2k+2)]2−4(k2−1)>0 | f(k)=k2−(2k+2)•k+k2−1>0 | >k |
| |
解得k无解.
综上,可得-1<k≤−.
故答案为:(-1,-]
设f(x)是定义在R上的函数,且在(—∞,+∞)上是增函数,又F(x)=f(x)-f(-x),那么 2020-06-03 …
下列命题:①定义在R上的函数f(x)满足f(4)>f(3),则f(x)是R上的增函数;②定义在R上 2020-06-08 …
函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x))=x^1/ 2020-06-09 …
在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数, 2020-06-26 …
①定义在R上函数f(x)满足f(2)>f(1),则f(x)是R上的增函数;②定义在R上函数f(x) 2020-07-22 …
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=f(x)x在I上是减函数,则称y=f 2020-07-22 …
如果对任意x1,x2∈R,都有f[(x1+x2)/2]≤1/2[f(x1)+f(x2),则称函数f 2020-07-29 …
有以下命题:(1)若函数f(x),g(x)在R上是增函数,则f(x)+g(x)在R上也是增函数;( 2020-08-01 …
已知函数y=f(x)是定义在[a,b]上的减函数,那么y=f-1(x)是()A.在[f(a),f( 2020-08-01 …
设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0 2020-08-01 …