早教吧作业答案频道 -->其他-->
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=f(x)x在I上是减函数,则称y=f(x)是I上的“非若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=f(x)x在I上是减函数,则称
题目详情
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=f(x)x在I上是减函数,则称y=f(x)是I上的“非
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=
在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x+
+alnx(a∈R)
(1)判断f(x)在(0,1]上是否是“非完美增函数”;
(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=
| f(x) |
| x |
| 2 |
| x |
(1)判断f(x)在(0,1]上是否是“非完美增函数”;
(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.
▼优质解答
答案和解析
(1)由于f(x)=lnx,在(0,1]上是增函数,且F(x)=
=
,
∵F′(x)=
,∴当x∈(0,1]时,F′(x)>0,F(x)为增函数,
∴f(x)在(0,1]上不是“非完美增函数”;
(2)∵g(x)=2x+
+alnx,
∴g′(x)=2-
+
=
,
∵g(x)是[1,+∞)上的“非完美增函数”,
∴g′(x)≥0在[1,+∞)上恒成立,
∴g′(1)≥0,∴a≥0,
又G(x)=
=2+
+
在[1,+∞)上是减函数,
∴G′(x)≤0在[1,+∞)恒成立,即-
+
≤0在[1,+∞)恒成立,
即ax-axlnx-4≤0在[1,+∞)恒成立,
令p(x)=ax-axlnx-4,则p′(x)=-alnx≤0恒成立(∵a≥0,x≥1),
∴p(x)=ax-axlnx-4在[1,+∞)上单调递减,
∴p(x)max=p(1)=a-4≤0,解得:a≤4;
综上所述0≤a≤4.
| f(x) |
| x |
| lnx |
| x |
∵F′(x)=
| 1?lnx |
| x2 |
∴f(x)在(0,1]上不是“非完美增函数”;
(2)∵g(x)=2x+
| 2 |
| x |
∴g′(x)=2-
| 2 |
| x2 |
| a |
| x |
| 2x2+ax?2 |
| x2 |
∵g(x)是[1,+∞)上的“非完美增函数”,
∴g′(x)≥0在[1,+∞)上恒成立,
∴g′(1)≥0,∴a≥0,
又G(x)=
| g(x) |
| x |
| 2 |
| x2 |
| alnx |
| x |
∴G′(x)≤0在[1,+∞)恒成立,即-
| 4 |
| x3 |
| a(1?lnx) |
| x2 |
即ax-axlnx-4≤0在[1,+∞)恒成立,
令p(x)=ax-axlnx-4,则p′(x)=-alnx≤0恒成立(∵a≥0,x≥1),
∴p(x)=ax-axlnx-4在[1,+∞)上单调递减,
∴p(x)max=p(1)=a-4≤0,解得:a≤4;
综上所述0≤a≤4.
看了 若函数f(x)是定义域D内的...的网友还看了以下:
为什么f(1-m)+f(1-m2)>0,即为f(1-m)>f(m2-1).求详解为什么f(1-m)+ 2020-03-30 …
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2 2020-05-13 …
函数f定义在正整数集上f(1)=1,f(3)=3,且对每个正整数n都有f(2n)=f(n),f(4 2020-05-16 …
1、已知函数f(x)的定义域是[0,1]。求f(x-2),f(x-1),f(2x-2)的定义域。变 2020-05-17 …
函数的最大值定义中为什么要存在这样一句话函数的最大值定义:条件一:对于定义在I上的函数f(x),有 2020-06-14 …
函数的运算:已知函数f(x)的定义域为R,对任意实数u,v满足f(u+v)=f(u)+f(v),且 2020-07-27 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2) 2020-12-08 …
对于f(x)中f表示对应关系,那么(x)的含义是什么还有下面这句话应如何理解:函数f(x)对于任何实 2021-01-15 …