早教吧作业答案频道 -->数学-->
设f(x)为连续函数,且f(x)>0,x∈[a,b],F(x)=∫(上限x下限a)f(t)dt+∫(上限x下限a)1/f(t)dt,x∈[a,b],证明方程F(x)=0在区间[a,b]上有且仅有一个根?
题目详情
设f(x)为连续函数,且f(x)>0,x∈[a,b],F(x)=∫(上限x下限a)f(t)dt+∫(上限x下限a)1/f(t)dt,x∈[a,b],证明方程F(x)=0在区间[a,b]上有且仅有一个根?
▼优质解答
答案和解析
证明如图:

看了 设f(x)为连续函数,且f(...的网友还看了以下:
一道同济出的《高等数学》书上的例题设f(x)在[0,正无穷)内连续且f(x)>0,证明函数F(x) 2020-06-10 …
证明f'(ξ)/f(ξ)=f'(1-ξ)/f(1-ξ)设f(x)在[0,1]上连续,在(0,1)内 2020-06-12 …
一道高数证明题函数f属于[0,1],f(0)=f(1)=0,证明|积分(0,1)f(x)dx| 2020-07-20 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定若A是 2020-07-31 …
高数证明题(急)设函数f(x)在[0,1]有连续导数,在区间(0,1)内二阶可导且f(0)=f(1 2020-08-01 …
已知f(x)有二阶连续导数,f(x)>0,证明:当f(0)>1,f`(0)=0,f``(0)>0时, 2020-11-01 …
f(x)在[a,b]上连续(a,b)上可导,且f(a)=f(b)=0证明任取k属于R,存在ξ属于(a 2020-11-03 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …