早教吧作业答案频道 -->数学-->
如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O顺时针旋转至图2,使
题目详情
如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为______秒(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.

(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为______秒(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
▼优质解答
答案和解析
(1)已知∠AOC=60°,
∴∠BOC=120°,
又OM平分∠BOC,
∠COM=
∠BOC=60°,
∴∠CON=∠COM+90°=150°;
(2)延长NO,
∵∠BOC=120°
∴∠AOC=60°,
当直线ON恰好平分锐角∠AOC,
∴∠AOD=∠COD=30°,
即顺时针旋转300°时NO延长线平分∠AOC,
由题意得,10t=300°
∴t=30,
当NO平分∠AOC,
∴∠NOR=30°,
即顺时针旋转120°时NO平分∠AOC,
∴10t=120°,
∴t=12,
∴t=12或30;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°,
所以∠AOM与∠NOC之间的数量关系为:∠AOM-∠NOC=30°.
∴∠BOC=120°,
又OM平分∠BOC,
∠COM=
1 |
2 |
∴∠CON=∠COM+90°=150°;
(2)延长NO,
∵∠BOC=120°
∴∠AOC=60°,
当直线ON恰好平分锐角∠AOC,
∴∠AOD=∠COD=30°,
即顺时针旋转300°时NO延长线平分∠AOC,
由题意得,10t=300°
∴t=30,
当NO平分∠AOC,
∴∠NOR=30°,

即顺时针旋转120°时NO平分∠AOC,
∴10t=120°,
∴t=12,
∴t=12或30;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°,
所以∠AOM与∠NOC之间的数量关系为:∠AOM-∠NOC=30°.
看了 如图1,点O为直线AB上一点...的网友还看了以下:
(2013•朝阳区一模)如图,⊙O是△ABC是的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在 2020-06-15 …
有一个大圆,里面有2个半圆和1个圆.圆A直径9厘有一个大圆,里面有2个半圆和1个圆.半圆A(半圆) 2020-06-19 …
已知直线y=kx+3经过点A(-4,0),且与y轴交于点B,点O为坐标原点.(1)求k的值;(2) 2020-06-29 …
如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AD交O于点E(1)求证 2020-07-30 …
直线AB与CD相交于点O,角1:角2=2:3,求角BOD的度数.直线AB,CD,EF相交于点O.若 2020-08-02 …
如图,直线x垂直于直线y于点o,直线x垂直于点B,E是线段AB上一定点,D点为线段OB上的一动点(点 2020-11-01 …
在平行四边形ABCD中,对角线AC,BD相交于点O,直线m过点O,交BC于点F.若点G,H分别是BO 2020-12-25 …
如图,在平面直角坐标系中,点B的坐标为(-8,0),△ABO是直角三角形,且OA=10,将△ABO绕 2020-12-25 …
如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在轴的正半轴上,O为坐标原点.现将正方形 2020-12-25 …
直三棱柱上下底面均为直角三角形∠B为九十度以下底面的B为原点建系,求一个侧面的法向量若底面为等腰直角 2021-02-05 …