早教吧作业答案频道 -->数学-->
如图,在△BCE中,点A是边BE上一点,以AB为直径的O与CE相切于点D,AD∥OC,点F为OC与O的交点,连接AF.(1)求证:CB是O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.
题目详情
如图,在△BCE中,点A是边BE上一点,以AB为直径的 O与CE相切于点D,AD∥OC,点F为OC与 O的交点,连接AF.

(1)求证:CB是 O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

(1)求证:CB是 O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.
▼优质解答
答案和解析
(1)证明:连接OD,与AF相交于点G,
∵CE与 O相切于点D,
∴OD⊥CE,
∴∠CDO=90°,
∵AD∥OC,
∴∠ADO=∠1,∠DAO=∠2,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠1=∠2,
在△CDO和△CBO中,
,
∴△CDO≌△CBO,
∴∠CBO=∠CDO=90°,
∴CB是 O的切线.
(2)由(1)可知∠3=∠BCO,∠1=∠2,
∵∠ECB=60°,
∴∠3=
∠ECB=30°,
∴∠1=∠2=60°,
∴∠4=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴AD=OD=OF,∵∠1=∠ADO,
在△ADG和△FOG中,
,
∴△ADG≌△FOG,
∴S△ADG=S△FOG,
∵AB=6,
∴ O的半径r=3,
∴S阴=S扇形ODF=
=
π.
∵CE与 O相切于点D,
∴OD⊥CE,
∴∠CDO=90°,
∵AD∥OC,
∴∠ADO=∠1,∠DAO=∠2,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠1=∠2,
在△CDO和△CBO中,

|
∴△CDO≌△CBO,
∴∠CBO=∠CDO=90°,
∴CB是 O的切线.
(2)由(1)可知∠3=∠BCO,∠1=∠2,
∵∠ECB=60°,
∴∠3=
1 |
2 |
∴∠1=∠2=60°,
∴∠4=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴AD=OD=OF,∵∠1=∠ADO,
在△ADG和△FOG中,
|
∴△ADG≌△FOG,
∴S△ADG=S△FOG,
∵AB=6,
∴ O的半径r=3,
∴S阴=S扇形ODF=
60π•32 |
360 |
3 |
2 |
看了 如图,在△BCE中,点A是边...的网友还看了以下:
在三角形abc中,角A,B,C的对边依次是a,b,c切b是a,c的等差中项,等角B取得最大值时则 2020-04-27 …
求助MATLAB符号计算:%声明符号变量syms c w t b a D n T v Q x y; 2020-05-16 …
已知圆C:x^2+y^2+ax-4y+1=0(a属于R),过定点P(0,1)作斜率为1的直线交圆C 2020-06-09 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
已知点是圆内一点,直线l是以M为中点的弦所在的直线,直线m的方程为,那么A.且m与圆C相切B.且/ 2020-07-26 …
(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0 2020-07-26 …
设直角三角形的三边为a,b.c,内切圆直径为2r若a,b,c成等差数列,求证:1内切圆的半径等于公 2020-08-01 …
aW、bX、cC、dZ、eR是五种短周期元素,e-d=d-c=c-b=b-a=4,其中一种是常见金属 2020-11-26 …
已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/a+c=c/a+b=k,则直线y=kx 2020-12-09 …
下列各式中与a-b-c的值不相等的是().A.a-(+b)-(-c)B.a-(+b)-(+c)C.a 2021-01-22 …