早教吧作业答案频道 -->数学-->
在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不
题目详情
在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.
(1)当点D在线段AB上时(点D不与点A、B重合),如图1
①请你将图形补充完整;
②线段BF、AD所在直线的位置关系为___,线段BF、AD的数量关系为___;
(2)当点D在线段AB的延长线上时,如图2
①请你将图形补充完整;
②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.

(1)当点D在线段AB上时(点D不与点A、B重合),如图1
①请你将图形补充完整;
②线段BF、AD所在直线的位置关系为___,线段BF、AD的数量关系为___;
(2)当点D在线段AB的延长线上时,如图2
①请你将图形补充完整;
②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.

▼优质解答
答案和解析
(1)①见图1所示.
②
证明:连接ED,DF.
∵CD⊥EF,
∴∠DCF=90°,
∵∠ACB=90°,
∴∠ACB=∠DCF,
∴∠ACD=∠BCF
∵BC=AC,CD=CF,
∴△ACD≌△BCF,
∴AD=BF,∠BAC=∠FBC,
∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,
即BF⊥AD.
故答案为:垂直、相等.
(2)①见图2所示.
②成立.理由如下:
证明:∵CD⊥EF,
∴∠DCF=90°,
∵∠ACB=90°,
∴∠DCF+∠BCD=∠ACB+∠BCD,
即∠ACD=∠BCF,
∵BC=AC,CD=CF,
∴△ACD≌△BCF,
∴AD=BF,∠BAC=∠FBC,
∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,
即BF⊥AD.
②

∵CD⊥EF,
∴∠DCF=90°,
∵∠ACB=90°,
∴∠ACB=∠DCF,
∴∠ACD=∠BCF
∵BC=AC,CD=CF,
∴△ACD≌△BCF,
∴AD=BF,∠BAC=∠FBC,
∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,
即BF⊥AD.
故答案为:垂直、相等.
(2)①见图2所示.

②成立.理由如下:
证明:∵CD⊥EF,
∴∠DCF=90°,
∵∠ACB=90°,
∴∠DCF+∠BCD=∠ACB+∠BCD,
即∠ACD=∠BCF,
∵BC=AC,CD=CF,
∴△ACD≌△BCF,
∴AD=BF,∠BAC=∠FBC,
∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,
即BF⊥AD.
看了 在Rt△ABC中,BC=AC...的网友还看了以下:
若(a+b-c)(b+c-a)=3bc,则A=?看清楚是(a+b-c)不是(a+b+c)别的题目全 2020-04-26 …
正方体ABCD-A’B"C"D"中P,Q,R分别是AB,AD,BC的中点,那么正方体的过P,Q,R 2020-05-13 …
在正三棱锥P-ABC,AB=PA=8,过A作与PB,PC分别交于D和E的截面,则截面三角形ADE的 2020-05-14 …
正方体ABCD-A'B'C'D' EF分别为AA'.CC'的中点 P是CC'上的动点 过点EDP坐 2020-05-16 …
三棱台ABC-A`B`C`的上下底面均为正三角形三棱台ABC-A'B'C'的上下底面均为正三角形, 2020-05-21 …
从左至右三个三极管的工作状态分别为( )。A.截止、放大、饱和B.放大、放大、饱和C.截止、饱和、放 2020-05-28 …
第一种钢板可截成A规格1块,B规格2块,C规格1块;第二种钢板可截成A规格1块,B规格1块,C规格 2020-06-06 …
如图,已知线段a.b,c,和三角形ABC,在三角形边AB截取AD=c,在AC上截取AE=a.在BC 2020-06-27 …
求截距的计算.y=ax平方+bx+cd顶点坐标(-2,3)与y轴的截距为1,求a,b,c=?a,b 2020-07-22 …
三条截流长直导线A,B,C均垂直纸面,分别通电流2I,I,I,三导线形成边长a的正三角形,在重心放 2020-08-02 …