早教吧作业答案频道 -->其他-->
已知:如图,CA、CD是⊙O的切线,A、D为切点,AB是⊙O的直径,连OC交⊙O于E,连ED、EB.(1)试猜想∠ACD与∠BED的数量关系?并证明你的结论;(2)若⊙O的半径为5,ED=25,求sin∠BED的值.
题目详情

(1)试猜想∠ACD与∠BED的数量关系?并证明你的结论;
(2)若⊙O的半径为5,ED=2
5 |
▼优质解答
答案和解析
(1)答:∠ACD与∠BED的数量关系是∠ACD=2∠BED,
证明:连接OD,
∵CA、CD是⊙O的切线,A、D为切点,
∴∠CAO=∠CDO=90°,
∴∠ACD+∠AOD=360°-90°-90°=180°,
∵∠AOD+∠BOD=180°,
∴∠ACD=∠BOD,
由圆周角定理得:∠BOD=2∠BED,
∴∠ACD=2∠BED.
(2)连接AD交CO于M,
∵CA、CD是⊙O的切线,A、D为切点,
∴AC=CD,∠ACO=∠DCO=
∠ACD,
∵∠ACD=2∠BED,
∴∠BED=∠DCO,
∵AC=CD,∠ACO=∠DCO,
∴CO⊥AD,
∴∠DMO=90°=∠CDO,
∴∠DCO+∠DOM=90°,∠ODM+∠DOM=90°,
∴∠ODM=∠DCO=∠BED,
设OM=x,则EM=5-x,
由勾股定理得:DM2=(2
)2-(5-x)2=52-x2,
x=3,
在Rt△OMD中,sin∠BED=sin∠ODM=
=
.

证明:连接OD,
∵CA、CD是⊙O的切线,A、D为切点,
∴∠CAO=∠CDO=90°,
∴∠ACD+∠AOD=360°-90°-90°=180°,
∵∠AOD+∠BOD=180°,
∴∠ACD=∠BOD,
由圆周角定理得:∠BOD=2∠BED,
∴∠ACD=2∠BED.

∵CA、CD是⊙O的切线,A、D为切点,
∴AC=CD,∠ACO=∠DCO=
1 |
2 |
∵∠ACD=2∠BED,
∴∠BED=∠DCO,
∵AC=CD,∠ACO=∠DCO,
∴CO⊥AD,
∴∠DMO=90°=∠CDO,
∴∠DCO+∠DOM=90°,∠ODM+∠DOM=90°,
∴∠ODM=∠DCO=∠BED,
设OM=x,则EM=5-x,
由勾股定理得:DM2=(2
5 |
x=3,
在Rt△OMD中,sin∠BED=sin∠ODM=
OM |
OD |
3 |
5 |
看了 已知:如图,CA、CD是⊙O...的网友还看了以下:
{a(n)}中a(1)=3;na(n=+1)-(n+1)a(n)=2n(n+1);证明{a(n)/n 2020-03-30 …
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
[高数]极限与无穷级数1,1/2lim[2+(-1)^n]开N方,n→∞为何极限为1/2?若N为偶则 2020-03-31 …
一道关于数的开方与实数的题因为a-b=(√a+√b)(√a-√b)1√(n+1)-√n=√(n+1 2020-04-27 …
///////证明 3^n-2^m=(2^k-3^n)a (n m k为自然数 a为大于的整数 n 2020-05-16 …
线性代数定理求证明Q为n*n维方阵由(n-q)*n微矩阵D 和q*n维矩阵C构成则C左乘Q逆将图示 2020-05-16 …
对于n属于N*,将n表示为n=a0(2011•湖南)对于n∈N+,将n表示n=a0×2k+a1×2 2020-05-17 …
13579.第n个数为246810第n个数为多少二分之一四分之一八分之一十六分之一第N个数为多少1 2020-06-07 …
帮忙求下下面三个极限:lim(n→∞)∑(n+i)½/(n³)½,下部为i=1,上部为n第二个li 2020-06-12 …
说出配合物[Mn(CN)6]3-的磁矩是多少?我是这样分析的Mn是3d54s2Mn3+就是3d4遇 2020-07-09 …