早教吧作业答案频道 -->数学-->
如图,AB⊥BC,DC⊥BC,垂足分别为B、C.(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果存在求线段BP的长;如果不存在,请说明理由;(2)设AB=a,DC=b,AD=c,那么当a、b、c之间
题目详情
如图,AB⊥BC,DC⊥BC,垂足分别为B、C.
(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果存在求线段BP的长;如果不存在,请说明理由
;
(2)设AB=a,DC=b,AD=c,那么当a、b、c之间满足什么关系时,在直线BC上存在点P,使AP⊥PD.
(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果存在求线段BP的长;如果不存在,请说明理由

(2)设AB=a,DC=b,AD=c,那么当a、b、c之间满足什么关系时,在直线BC上存在点P,使AP⊥PD.
▼优质解答
答案和解析
(1)存在.
如图所示,AP⊥PD,
∴∠APD=90°,
∴∠APB+∠DPC=90°,
又∵DC⊥BC,
∴∠DCP=90°,
∴∠PDC+∠DPC=90°,
∴∠APB=∠PDC,
∵∠B=∠C,
∴△ABP∽△PCD,
设BP=x,则CP=4-x,
∴
=
,即4:(4-x)=x:1,
即x(4-x)=4,
∴x2-4x+4=0,
即(x-2)2=0,
得出x=2,即BP=2;
(2)过D作DE⊥AB于E,
易得DC=BE=b,AE=a-b,BC=DE=
=
,
由(1)得△ABP∽△PCD,设PC=x,
则
=
,
化简得方程:x4-(c2-a2-b2)x2+a2b2=0,
若存在点P,则方程有实数根,
∴△=(c2-a2-b2)2-4a2b2=(c2-a2-b2+2ab)(c2-a2-b2-2ab)=[(c2-(a-b)2][c2-(a+b)2]≥0,
∵c>a-b,
∴c2-(a+b)2≥0,
∴c≥a+b,
∴当c≥a+b时,在直线BC上存在点P,使AP⊥PD.

如图所示,AP⊥PD,
∴∠APD=90°,
∴∠APB+∠DPC=90°,
又∵DC⊥BC,
∴∠DCP=90°,
∴∠PDC+∠DPC=90°,
∴∠APB=∠PDC,
∵∠B=∠C,
∴△ABP∽△PCD,
设BP=x,则CP=4-x,
∴
AB |
PC |
BP |
CD |
即x(4-x)=4,
∴x2-4x+4=0,
即(x-2)2=0,
得出x=2,即BP=2;
(2)过D作DE⊥AB于E,

AD2−(AB−CD)2 |
c2−(a−b)2 |
由(1)得△ABP∽△PCD,设PC=x,
则
x |
a |
b | ||
|
化简得方程:x4-(c2-a2-b2)x2+a2b2=0,
若存在点P,则方程有实数根,
∴△=(c2-a2-b2)2-4a2b2=(c2-a2-b2+2ab)(c2-a2-b2-2ab)=[(c2-(a-b)2][c2-(a+b)2]≥0,
∵c>a-b,
∴c2-(a+b)2≥0,
∴c≥a+b,
∴当c≥a+b时,在直线BC上存在点P,使AP⊥PD.
看了 如图,AB⊥BC,DC⊥BC...的网友还看了以下:
如图,△ABC是正三角形,EA和DC都垂直于平面ABC且EA=AB=2a,DC=a,F,G,H分别 2020-04-27 …
求有理数a的绝对值时,先要判明a的符号:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时 2020-06-12 …
如图,在四边形纸片ABCD中,AB平行DC,∠A=90°,CD>AD,把纸片沿过点D的直线折叠,使 2020-07-09 …
当正数a的前面有偶数个负号时,化简结果为();当正数a的前面有奇数个负号时,化简结果当正数a的前面 2020-07-19 …
(2010•唐山一模)如图,在四棱锥V-ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、 2020-11-12 …
如图,某炮兵阵地位于A点,两观察所分别位于C、D两点,已知△ACD为正三角形,且DC=3km,当目标 2020-11-21 …
如图,矩形ABCD中,DC=a,BC=2a,以C为圆心,CB为半径画弧,交AD于E,以D为圆心,DC 2020-11-26 …
当a>0时,|a|=a,当a=0时,|a|=啊,当a<0时,|a|=-a如果a>0,那么|-a|=多 2020-12-05 …
如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC 2020-12-25 …
解直角三角形四边形ABCD是梯形,AD‖BC,∠B=90°,点E在AB上,BE=AD=1/2AE,D 2021-01-22 …