早教吧作业答案频道 -->数学-->
求证:斐波拉契数列的通式为Fn=(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)/sqrt(5)injustify1方法一中,为什么Fn=C1*X1^n+C2*X2^n?X^2=X+1是什么方程?
题目详情
求证:斐波拉契数列的通式为
Fn=(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)/sqrt(5)
injustify1
方法一中,为什么Fn=C1*X1^n+C2*X2^n? X^2=X+1是什么方程?
Fn=(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)/sqrt(5)
injustify1
方法一中,为什么Fn=C1*X1^n+C2*X2^n? X^2=X+1是什么方程?
▼优质解答
答案和解析
项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1,-rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1,-rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1,-rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1,-rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
看了 求证:斐波拉契数列的通式为F...的网友还看了以下:
已知f(X)=x2-x+c定义在区间〔0,1〕上,X1,X2属于〔0,1〕,且X1≠X2,求证:| 2020-04-25 …
设定义在R上的函数f(x)对任意x1、x2满足f(x1+x2)=f(x1)f(x2),且f(x)在 2020-05-17 …
f(x1)f(x2)+g(x1)g(x2)=g(x1-x2),求证[f(x)]^n+[g(x)]^ 2020-05-17 …
证明:1.若f(x)=a+b,则f(x1/2+x2/2)=f(x1)/2+f(x2)/2.2.若g 2020-05-17 …
已知f(x)=根号(1+x^2)定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2( 2020-05-22 …
已知f(x)=根号(1+x^2)定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2( 2020-05-22 …
一道高一水平的数学体,具体如下:函数y=f(x)定义在R上,当x>0时,f(x)>1,且对任意m, 2020-06-05 …
设f(x)在(0,正无穷)上有定义,x1>0,x2>0,若F(x)/x单调上升,求证,F(x1+x 2020-06-12 …
某同学准备用反证法证明如下一个问题:函数f(x)在[0,1]上有意义,且f(0)=f(1),如果对 2020-08-01 …
已知函数fx=x-1/e^(x-1),x属于R,1,求函数fx的单调区间和极值.2,已知函数y=g 2020-08-02 …