早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知复数Z满足:丨z丨=1+3i—z,求(1+i)²(3+4i)²/2z的值.

题目详情
已知复数Z满足:丨z丨=1+3i—z,求(1+i)²(3+4i)²/2z的值.
▼优质解答
答案和解析
解设z=x+yi
则由丨z丨=1+3i—z
得√x²+y²=1+3i-(x+yi)
即√(x²+y²)+yi=1-x+3i
即√(x²+y²)=1-x,y=3
把y=3代入√(x²+y²)=1-x
得√(x²+3²)=1-x
即x²+3²=x²-2x+1
即2x=1-9=-8
即x=-4
即z=-4+3i
下面运算(1+i)²(3+4i)²/2z
(1+i)²=1+2i+i²=2i
(3+4i)²=9+24i+(4i)²=-7+24i
则(1+i)²(3+4i)²/2z
=2i(-7+24i)/2(-4+3i)
=(-7i+24i²)/(-4+3i)
=(-24-7i)/(-4+3i)
=(-24-7i)(-4-3i)/(-4+3i)(-4-3i)
=(96+72i+28i+21i²)/(-4)²-(3i)²
=(75+100i)/25
=3+4I