早教吧作业答案频道 -->数学-->
已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*)(1)求数列{an}的通项公式;(2)求数列{n•2an}的前n项和Tn.
题目详情
已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*)
(1)求数列{an}的通项公式;
(2)求数列{n•2an}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)求数列{n•2an}的前n项和Tn.
▼优质解答
答案和解析
(1)∵数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*),
∴当n=1时,a1a2=2a1,解得a2=2,
当n≥2时,an-1an=2Sn-1,an(an+1-an-1)=2an,
∵an>0,∴an+1-an-1=2,
∴a1,a3,…,a2n-1,…,是以1为首项,2为公差的等差数列,a2n-1=2n-1,
a2,a4,…,a2n,…,是以2为首项,2为公差的等差数,a2n=2n,
∴an=n,n∈N*.
(2)∵an=n,n•2an=n•2n,
∴数列{n•2an}的前n项和:
Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1,②
②-①,得:
Tn=n•2n+1-(2+22+23+…+2n)
=n•2n+1-
=(n-1)•2n+1+2.
∴当n=1时,a1a2=2a1,解得a2=2,
当n≥2时,an-1an=2Sn-1,an(an+1-an-1)=2an,
∵an>0,∴an+1-an-1=2,
∴a1,a3,…,a2n-1,…,是以1为首项,2为公差的等差数列,a2n-1=2n-1,
a2,a4,…,a2n,…,是以2为首项,2为公差的等差数,a2n=2n,
∴an=n,n∈N*.
(2)∵an=n,n•2an=n•2n,
∴数列{n•2an}的前n项和:
Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1,②
②-①,得:
Tn=n•2n+1-(2+22+23+…+2n)
=n•2n+1-
2(1-2n) |
1-2 |
=(n-1)•2n+1+2.
看了 已知数列{an}各项均为正数...的网友还看了以下:
用数组做题.求sn =a+aa+aaa+……+aa…aa之值,其中a是一个数字,n表示a的位数,求 2020-04-06 …
已知各项均不为零的数列{an}的前n项和为Sn,且Sn=ana(n+1)/2,其中a1=1.若不等 2020-05-13 …
已知各项均不为零的数列{an}的前n项和为Sn,且Sn=ana(n+1)/2,其中a1=1,求{a 2020-05-13 …
我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰 2020-05-16 …
我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰 2020-05-16 …
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数...若自然数 2020-05-16 …
我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰 2020-07-07 …
在各项均为负数的数列{an}中,已知点(an,an+1)﹙n∈N*﹚均在函数y=2x/3的图像上, 2020-07-09 …
设数列{an}的各项均为不等的正整数,其前n项和为Sn,我们成满足条件“对任意的m,n∈N*,均有 2020-07-22 …
如图所示的三角形数阵中,满足:(1)第1行的数为1,(2)第n(n≥2)行首尾两数均为n,其余的数都 2020-11-20 …