早教吧作业答案频道 -->数学-->
2014o咸宁)如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;
题目详情
2014o咸宁)如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=
.下列结论:
①△ADE∽△ACD;
②当BD=6时,△ABD与△DCE全等;
③△DCE为直角三角形时,BD为8或
;
④0<CE≤6.4.
其中正确的结论是 .(把你认为正确结论的序号都填上)
第二个具体怎么正?
.下列结论:
①△ADE∽△ACD;
②当BD=6时,△ABD与△DCE全等;
③△DCE为直角三角形时,BD为8或
;
④0<CE≤6.4.
其中正确的结论是 .(把你认为正确结论的序号都填上)
第二个具体怎么正?
▼优质解答
答案和解析
①∵AB=AC,
∴∠B=∠C,
又∵∠ADE=∠B
∴∠ADE=∠C,
∴△ADE∽△ACD;
故①结论正确,
②AB=AC=10,∠ADE=∠B=α,cosα= ,
∴BC=16,
∵BD=6,
∴DC=10,
∴AB=DC,
在△ABD与△DCE中,
∴△ABD≌△DCE(ASA).
故②正确,
③当∠AED=90°时,由①可知:△ADE∽△ACD,
∴∠ADC=∠AED,
∵∠AED=90°,
∴∠ADC=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且cosα= .AB=10,
BD=8.
当∠CDE=90°时,易△CDE∽△BAD,
∵∠CDE=90°,
∴∠BADF=90°,
∵∠B=α且cosα= .AB=10,
∴cos∠B= = ,
∴BD= .
故③正确.
④易证得△CDE∽△BAD,由②可知BC=16,
设BD=y,CE=x,
∴ = ,
∴ = ,
整理得:y2﹣16y+64=64﹣10x,
即(y﹣8)2=64﹣10x,
∴0<y<8,0<x<6.4.
故④正确.
∴∠B=∠C,
又∵∠ADE=∠B
∴∠ADE=∠C,
∴△ADE∽△ACD;
故①结论正确,
②AB=AC=10,∠ADE=∠B=α,cosα= ,
∴BC=16,
∵BD=6,
∴DC=10,
∴AB=DC,
在△ABD与△DCE中,
∴△ABD≌△DCE(ASA).
故②正确,
③当∠AED=90°时,由①可知:△ADE∽△ACD,
∴∠ADC=∠AED,
∵∠AED=90°,
∴∠ADC=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且cosα= .AB=10,
BD=8.
当∠CDE=90°时,易△CDE∽△BAD,
∵∠CDE=90°,
∴∠BADF=90°,
∵∠B=α且cosα= .AB=10,
∴cos∠B= = ,
∴BD= .
故③正确.
④易证得△CDE∽△BAD,由②可知BC=16,
设BD=y,CE=x,
∴ = ,
∴ = ,
整理得:y2﹣16y+64=64﹣10x,
即(y﹣8)2=64﹣10x,
∴0<y<8,0<x<6.4.
故④正确.
看了 2014o咸宁)如图,在△A...的网友还看了以下:
将平行四边形ABCD对折是C与A重合,点D落到D'处,折痕为EF,连接CF则AECF什么图形 2020-04-05 …
如图,将一平行四边形纸片ABCD沿EF折叠,使点C与A重合,点D落在G处.(1)、判断△ABC与△ 2020-04-05 …
将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF,(1)试说明 2020-04-05 …
如图,在Rt△ABC中,∠ACB=90°,AB=BC,AB=8,点P是AB上的一个动点(不与A、B 2020-05-14 …
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到处,折痕为EF.(1)求证:△AB 2020-05-15 …
(2007•青岛)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为E 2020-05-15 …
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D`处,折痕为EF求证:△ABE≌ 2020-05-15 …
将平行四边形纸片ABCD按下图方式折叠,使点C与A重合,点D落到D'处,折痕为EF.(1)求证:△ 2020-05-15 …
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D一撇处,折痕为EF.求证:△AB 2020-05-15 …
如图 将平行四边形abcd纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)求证:AE=AF 2020-05-15 …