早教吧作业答案频道 -->其他-->
设函数y=f(x)是微分方程y"-2y'+4y=0的一个解.若f(x0)>0,f'(x0)=0,则函数f(x)在点x0某个领域内单调递增?
题目详情
设函数y=f(x)是微分方程y"-2y'+4y=0的一个解.若f(x0)>0,f'(x0)=0,则函数f(x)在点x0某个领域内单调递增?
▼优质解答
答案和解析
f'(x0)=0,y'=0
f(x0)>0,y>0
y''=2y'-4yx0时,f'(x)
f(x0)>0,y>0
y''=2y'-4yx0时,f'(x)
看了 设函数y=f(x)是微分方程...的网友还看了以下:
f(x)在0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明 2020-06-05 …
书上有句话说1.在(a,b)内可导的函数f(x)在(a,b)上递增的充要条件是f'(x)≥0.那言 2020-06-06 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)求证:f(x)在(0,正无穷)上是单调递 2020-06-14 …
奇函数f(x)的定义域为[-2,2],若f(x)在[0,2]上单调递减,且f(1+m)+奇函数f( 2020-06-25 …
定义在R上的偶函数f(x)在(﹣∞,0]上单调递增,若f(a+1)<f(2a-1),求a的取值范围 2020-07-08 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
函数单调性问题若f(x)的导数f'(x)在(0,+∞)内是严格单调递增的,且f(0)=0,证明(f 2020-08-01 …
已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+12x 2020-10-31 …
xy为任意实数,f(x+y)=f(x)+2y(x+y)f(1)=1求f(x)1、令x+y=1,那么y 2020-10-31 …
已知平面π:x+2y-3z+4=0点O(0,0,0),A(1,1,4),B(0,0,4),E(1,3 2020-10-31 …