早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知抛物线与x轴交于A(-1,0)和B(3,0)两点,且与y轴交于点C(0,3).(1)求抛物线的解析式;(2)抛物线的对称轴方程和顶点M坐标;(3)求四边形ABMC的面积.

题目详情
已知抛物线与x轴交于A(-1,0)和B(3,0)两点,且与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)抛物线的对称轴方程和顶点M坐标;
(3)求四边形ABMC的面积.
▼优质解答
答案和解析
(1)由题意,可设抛物线的解析式为y=a(x+1)(x-3).
将C点坐标代入后可得:
3=a(0+1)(0-3),
即a=-1
因此抛物线的解析式为:y=-(x+1)(x-3)=-x2+2x+3;
(2)由(1)的抛物线的解析式可知:y=-x2+2x+3=-(x-1)2+4,
因此抛物线的对称轴方程为:x=1;顶点M的坐标为:M(1,4).
(3)过M作MN⊥x轴于N,
则有S四边形ABMC=S△AOC+S△BMN+S梯形MNOC
=
1
2
•OA•OC+
1
2
•BN•MN+
1
2
(OC+MN)•ON
=
1
2
×1×3+
1
2
×2×4+
1
2
×(3+4)×1
=9;
因此四边形ABMC的面积为9.